This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A special version of class substitution commonly used for structures. (Contributed by Thierry Arnoux, 15-Mar-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sbcie3s.a | ⊢ 𝐴 = ( 𝐸 ‘ 𝑊 ) | |
| sbcie3s.b | ⊢ 𝐵 = ( 𝐹 ‘ 𝑊 ) | ||
| sbcie3s.c | ⊢ 𝐶 = ( 𝐺 ‘ 𝑊 ) | ||
| sbcie3s.1 | ⊢ ( ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ∧ 𝑐 = 𝐶 ) → ( 𝜑 ↔ 𝜓 ) ) | ||
| Assertion | sbcie3s | ⊢ ( 𝑤 = 𝑊 → ( [ ( 𝐸 ‘ 𝑤 ) / 𝑎 ] [ ( 𝐹 ‘ 𝑤 ) / 𝑏 ] [ ( 𝐺 ‘ 𝑤 ) / 𝑐 ] 𝜓 ↔ 𝜑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcie3s.a | ⊢ 𝐴 = ( 𝐸 ‘ 𝑊 ) | |
| 2 | sbcie3s.b | ⊢ 𝐵 = ( 𝐹 ‘ 𝑊 ) | |
| 3 | sbcie3s.c | ⊢ 𝐶 = ( 𝐺 ‘ 𝑊 ) | |
| 4 | sbcie3s.1 | ⊢ ( ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ∧ 𝑐 = 𝐶 ) → ( 𝜑 ↔ 𝜓 ) ) | |
| 5 | fvexd | ⊢ ( 𝑤 = 𝑊 → ( 𝐸 ‘ 𝑤 ) ∈ V ) | |
| 6 | fvexd | ⊢ ( ( 𝑤 = 𝑊 ∧ 𝑎 = ( 𝐸 ‘ 𝑤 ) ) → ( 𝐹 ‘ 𝑤 ) ∈ V ) | |
| 7 | fvexd | ⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑎 = ( 𝐸 ‘ 𝑤 ) ) ∧ 𝑏 = ( 𝐹 ‘ 𝑤 ) ) → ( 𝐺 ‘ 𝑤 ) ∈ V ) | |
| 8 | simpllr | ⊢ ( ( ( ( 𝑤 = 𝑊 ∧ 𝑎 = ( 𝐸 ‘ 𝑤 ) ) ∧ 𝑏 = ( 𝐹 ‘ 𝑤 ) ) ∧ 𝑐 = ( 𝐺 ‘ 𝑤 ) ) → 𝑎 = ( 𝐸 ‘ 𝑤 ) ) | |
| 9 | fveq2 | ⊢ ( 𝑤 = 𝑊 → ( 𝐸 ‘ 𝑤 ) = ( 𝐸 ‘ 𝑊 ) ) | |
| 10 | 9 | ad3antrrr | ⊢ ( ( ( ( 𝑤 = 𝑊 ∧ 𝑎 = ( 𝐸 ‘ 𝑤 ) ) ∧ 𝑏 = ( 𝐹 ‘ 𝑤 ) ) ∧ 𝑐 = ( 𝐺 ‘ 𝑤 ) ) → ( 𝐸 ‘ 𝑤 ) = ( 𝐸 ‘ 𝑊 ) ) |
| 11 | 8 10 | eqtrd | ⊢ ( ( ( ( 𝑤 = 𝑊 ∧ 𝑎 = ( 𝐸 ‘ 𝑤 ) ) ∧ 𝑏 = ( 𝐹 ‘ 𝑤 ) ) ∧ 𝑐 = ( 𝐺 ‘ 𝑤 ) ) → 𝑎 = ( 𝐸 ‘ 𝑊 ) ) |
| 12 | 11 1 | eqtr4di | ⊢ ( ( ( ( 𝑤 = 𝑊 ∧ 𝑎 = ( 𝐸 ‘ 𝑤 ) ) ∧ 𝑏 = ( 𝐹 ‘ 𝑤 ) ) ∧ 𝑐 = ( 𝐺 ‘ 𝑤 ) ) → 𝑎 = 𝐴 ) |
| 13 | simplr | ⊢ ( ( ( ( 𝑤 = 𝑊 ∧ 𝑎 = ( 𝐸 ‘ 𝑤 ) ) ∧ 𝑏 = ( 𝐹 ‘ 𝑤 ) ) ∧ 𝑐 = ( 𝐺 ‘ 𝑤 ) ) → 𝑏 = ( 𝐹 ‘ 𝑤 ) ) | |
| 14 | fveq2 | ⊢ ( 𝑤 = 𝑊 → ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑊 ) ) | |
| 15 | 14 | ad3antrrr | ⊢ ( ( ( ( 𝑤 = 𝑊 ∧ 𝑎 = ( 𝐸 ‘ 𝑤 ) ) ∧ 𝑏 = ( 𝐹 ‘ 𝑤 ) ) ∧ 𝑐 = ( 𝐺 ‘ 𝑤 ) ) → ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑊 ) ) |
| 16 | 13 15 | eqtrd | ⊢ ( ( ( ( 𝑤 = 𝑊 ∧ 𝑎 = ( 𝐸 ‘ 𝑤 ) ) ∧ 𝑏 = ( 𝐹 ‘ 𝑤 ) ) ∧ 𝑐 = ( 𝐺 ‘ 𝑤 ) ) → 𝑏 = ( 𝐹 ‘ 𝑊 ) ) |
| 17 | 16 2 | eqtr4di | ⊢ ( ( ( ( 𝑤 = 𝑊 ∧ 𝑎 = ( 𝐸 ‘ 𝑤 ) ) ∧ 𝑏 = ( 𝐹 ‘ 𝑤 ) ) ∧ 𝑐 = ( 𝐺 ‘ 𝑤 ) ) → 𝑏 = 𝐵 ) |
| 18 | simpr | ⊢ ( ( ( ( 𝑤 = 𝑊 ∧ 𝑎 = ( 𝐸 ‘ 𝑤 ) ) ∧ 𝑏 = ( 𝐹 ‘ 𝑤 ) ) ∧ 𝑐 = ( 𝐺 ‘ 𝑤 ) ) → 𝑐 = ( 𝐺 ‘ 𝑤 ) ) | |
| 19 | fveq2 | ⊢ ( 𝑤 = 𝑊 → ( 𝐺 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑊 ) ) | |
| 20 | 19 | ad3antrrr | ⊢ ( ( ( ( 𝑤 = 𝑊 ∧ 𝑎 = ( 𝐸 ‘ 𝑤 ) ) ∧ 𝑏 = ( 𝐹 ‘ 𝑤 ) ) ∧ 𝑐 = ( 𝐺 ‘ 𝑤 ) ) → ( 𝐺 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑊 ) ) |
| 21 | 18 20 | eqtrd | ⊢ ( ( ( ( 𝑤 = 𝑊 ∧ 𝑎 = ( 𝐸 ‘ 𝑤 ) ) ∧ 𝑏 = ( 𝐹 ‘ 𝑤 ) ) ∧ 𝑐 = ( 𝐺 ‘ 𝑤 ) ) → 𝑐 = ( 𝐺 ‘ 𝑊 ) ) |
| 22 | 21 3 | eqtr4di | ⊢ ( ( ( ( 𝑤 = 𝑊 ∧ 𝑎 = ( 𝐸 ‘ 𝑤 ) ) ∧ 𝑏 = ( 𝐹 ‘ 𝑤 ) ) ∧ 𝑐 = ( 𝐺 ‘ 𝑤 ) ) → 𝑐 = 𝐶 ) |
| 23 | 12 17 22 4 | syl3anc | ⊢ ( ( ( ( 𝑤 = 𝑊 ∧ 𝑎 = ( 𝐸 ‘ 𝑤 ) ) ∧ 𝑏 = ( 𝐹 ‘ 𝑤 ) ) ∧ 𝑐 = ( 𝐺 ‘ 𝑤 ) ) → ( 𝜑 ↔ 𝜓 ) ) |
| 24 | 23 | bicomd | ⊢ ( ( ( ( 𝑤 = 𝑊 ∧ 𝑎 = ( 𝐸 ‘ 𝑤 ) ) ∧ 𝑏 = ( 𝐹 ‘ 𝑤 ) ) ∧ 𝑐 = ( 𝐺 ‘ 𝑤 ) ) → ( 𝜓 ↔ 𝜑 ) ) |
| 25 | 7 24 | sbcied | ⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑎 = ( 𝐸 ‘ 𝑤 ) ) ∧ 𝑏 = ( 𝐹 ‘ 𝑤 ) ) → ( [ ( 𝐺 ‘ 𝑤 ) / 𝑐 ] 𝜓 ↔ 𝜑 ) ) |
| 26 | 6 25 | sbcied | ⊢ ( ( 𝑤 = 𝑊 ∧ 𝑎 = ( 𝐸 ‘ 𝑤 ) ) → ( [ ( 𝐹 ‘ 𝑤 ) / 𝑏 ] [ ( 𝐺 ‘ 𝑤 ) / 𝑐 ] 𝜓 ↔ 𝜑 ) ) |
| 27 | 5 26 | sbcied | ⊢ ( 𝑤 = 𝑊 → ( [ ( 𝐸 ‘ 𝑤 ) / 𝑎 ] [ ( 𝐹 ‘ 𝑤 ) / 𝑏 ] [ ( 𝐺 ‘ 𝑤 ) / 𝑐 ] 𝜓 ↔ 𝜑 ) ) |