This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Move substitution in and out of a binary relation. (Contributed by NM, 23-Aug-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbcbr | ⊢ ( [ 𝐴 / 𝑥 ] 𝐵 𝑅 𝐶 ↔ 𝐵 ⦋ 𝐴 / 𝑥 ⦌ 𝑅 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcbr123 | ⊢ ( [ 𝐴 / 𝑥 ] 𝐵 𝑅 𝐶 ↔ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ⦋ 𝐴 / 𝑥 ⦌ 𝑅 ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) | |
| 2 | csbconstg | ⊢ ( 𝐴 ∈ V → ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = 𝐵 ) | |
| 3 | csbconstg | ⊢ ( 𝐴 ∈ V → ⦋ 𝐴 / 𝑥 ⦌ 𝐶 = 𝐶 ) | |
| 4 | 2 3 | breq12d | ⊢ ( 𝐴 ∈ V → ( ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ⦋ 𝐴 / 𝑥 ⦌ 𝑅 ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ↔ 𝐵 ⦋ 𝐴 / 𝑥 ⦌ 𝑅 𝐶 ) ) |
| 5 | br0 | ⊢ ¬ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ∅ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 | |
| 6 | csbprc | ⊢ ( ¬ 𝐴 ∈ V → ⦋ 𝐴 / 𝑥 ⦌ 𝑅 = ∅ ) | |
| 7 | 6 | breqd | ⊢ ( ¬ 𝐴 ∈ V → ( ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ⦋ 𝐴 / 𝑥 ⦌ 𝑅 ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ↔ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ∅ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) ) |
| 8 | 5 7 | mtbiri | ⊢ ( ¬ 𝐴 ∈ V → ¬ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ⦋ 𝐴 / 𝑥 ⦌ 𝑅 ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) |
| 9 | br0 | ⊢ ¬ 𝐵 ∅ 𝐶 | |
| 10 | 6 | breqd | ⊢ ( ¬ 𝐴 ∈ V → ( 𝐵 ⦋ 𝐴 / 𝑥 ⦌ 𝑅 𝐶 ↔ 𝐵 ∅ 𝐶 ) ) |
| 11 | 9 10 | mtbiri | ⊢ ( ¬ 𝐴 ∈ V → ¬ 𝐵 ⦋ 𝐴 / 𝑥 ⦌ 𝑅 𝐶 ) |
| 12 | 8 11 | 2falsed | ⊢ ( ¬ 𝐴 ∈ V → ( ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ⦋ 𝐴 / 𝑥 ⦌ 𝑅 ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ↔ 𝐵 ⦋ 𝐴 / 𝑥 ⦌ 𝑅 𝐶 ) ) |
| 13 | 4 12 | pm2.61i | ⊢ ( ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ⦋ 𝐴 / 𝑥 ⦌ 𝑅 ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ↔ 𝐵 ⦋ 𝐴 / 𝑥 ⦌ 𝑅 𝐶 ) |
| 14 | 1 13 | bitri | ⊢ ( [ 𝐴 / 𝑥 ] 𝐵 𝑅 𝐶 ↔ 𝐵 ⦋ 𝐴 / 𝑥 ⦌ 𝑅 𝐶 ) |