This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Move substitution in and out of a binary relation. (Contributed by NM, 13-Dec-2005) (Revised by NM, 22-Aug-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbcbr123 | |- ( [. A / x ]. B R C <-> [_ A / x ]_ B [_ A / x ]_ R [_ A / x ]_ C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcex | |- ( [. A / x ]. B R C -> A e. _V ) |
|
| 2 | br0 | |- -. [_ A / x ]_ B (/) [_ A / x ]_ C |
|
| 3 | csbprc | |- ( -. A e. _V -> [_ A / x ]_ R = (/) ) |
|
| 4 | 3 | breqd | |- ( -. A e. _V -> ( [_ A / x ]_ B [_ A / x ]_ R [_ A / x ]_ C <-> [_ A / x ]_ B (/) [_ A / x ]_ C ) ) |
| 5 | 2 4 | mtbiri | |- ( -. A e. _V -> -. [_ A / x ]_ B [_ A / x ]_ R [_ A / x ]_ C ) |
| 6 | 5 | con4i | |- ( [_ A / x ]_ B [_ A / x ]_ R [_ A / x ]_ C -> A e. _V ) |
| 7 | dfsbcq2 | |- ( y = A -> ( [ y / x ] B R C <-> [. A / x ]. B R C ) ) |
|
| 8 | csbeq1 | |- ( y = A -> [_ y / x ]_ B = [_ A / x ]_ B ) |
|
| 9 | csbeq1 | |- ( y = A -> [_ y / x ]_ R = [_ A / x ]_ R ) |
|
| 10 | csbeq1 | |- ( y = A -> [_ y / x ]_ C = [_ A / x ]_ C ) |
|
| 11 | 8 9 10 | breq123d | |- ( y = A -> ( [_ y / x ]_ B [_ y / x ]_ R [_ y / x ]_ C <-> [_ A / x ]_ B [_ A / x ]_ R [_ A / x ]_ C ) ) |
| 12 | nfcsb1v | |- F/_ x [_ y / x ]_ B |
|
| 13 | nfcsb1v | |- F/_ x [_ y / x ]_ R |
|
| 14 | nfcsb1v | |- F/_ x [_ y / x ]_ C |
|
| 15 | 12 13 14 | nfbr | |- F/ x [_ y / x ]_ B [_ y / x ]_ R [_ y / x ]_ C |
| 16 | csbeq1a | |- ( x = y -> B = [_ y / x ]_ B ) |
|
| 17 | csbeq1a | |- ( x = y -> R = [_ y / x ]_ R ) |
|
| 18 | csbeq1a | |- ( x = y -> C = [_ y / x ]_ C ) |
|
| 19 | 16 17 18 | breq123d | |- ( x = y -> ( B R C <-> [_ y / x ]_ B [_ y / x ]_ R [_ y / x ]_ C ) ) |
| 20 | 15 19 | sbiev | |- ( [ y / x ] B R C <-> [_ y / x ]_ B [_ y / x ]_ R [_ y / x ]_ C ) |
| 21 | 7 11 20 | vtoclbg | |- ( A e. _V -> ( [. A / x ]. B R C <-> [_ A / x ]_ B [_ A / x ]_ R [_ A / x ]_ C ) ) |
| 22 | 1 6 21 | pm5.21nii | |- ( [. A / x ]. B R C <-> [_ A / x ]_ B [_ A / x ]_ R [_ A / x ]_ C ) |