This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Move substitution in and out of a binary relation. (Contributed by NM, 23-Aug-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbcbr | |- ( [. A / x ]. B R C <-> B [_ A / x ]_ R C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcbr123 | |- ( [. A / x ]. B R C <-> [_ A / x ]_ B [_ A / x ]_ R [_ A / x ]_ C ) |
|
| 2 | csbconstg | |- ( A e. _V -> [_ A / x ]_ B = B ) |
|
| 3 | csbconstg | |- ( A e. _V -> [_ A / x ]_ C = C ) |
|
| 4 | 2 3 | breq12d | |- ( A e. _V -> ( [_ A / x ]_ B [_ A / x ]_ R [_ A / x ]_ C <-> B [_ A / x ]_ R C ) ) |
| 5 | br0 | |- -. [_ A / x ]_ B (/) [_ A / x ]_ C |
|
| 6 | csbprc | |- ( -. A e. _V -> [_ A / x ]_ R = (/) ) |
|
| 7 | 6 | breqd | |- ( -. A e. _V -> ( [_ A / x ]_ B [_ A / x ]_ R [_ A / x ]_ C <-> [_ A / x ]_ B (/) [_ A / x ]_ C ) ) |
| 8 | 5 7 | mtbiri | |- ( -. A e. _V -> -. [_ A / x ]_ B [_ A / x ]_ R [_ A / x ]_ C ) |
| 9 | br0 | |- -. B (/) C |
|
| 10 | 6 | breqd | |- ( -. A e. _V -> ( B [_ A / x ]_ R C <-> B (/) C ) ) |
| 11 | 9 10 | mtbiri | |- ( -. A e. _V -> -. B [_ A / x ]_ R C ) |
| 12 | 8 11 | 2falsed | |- ( -. A e. _V -> ( [_ A / x ]_ B [_ A / x ]_ R [_ A / x ]_ C <-> B [_ A / x ]_ R C ) ) |
| 13 | 4 12 | pm2.61i | |- ( [_ A / x ]_ B [_ A / x ]_ R [_ A / x ]_ C <-> B [_ A / x ]_ R C ) |
| 14 | 1 13 | bitri | |- ( [. A / x ]. B R C <-> B [_ A / x ]_ R C ) |