This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalence inside and outside of a substitution are equivalent. (Contributed by NM, 14-May-1993)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbbi | |- ( [ y / x ] ( ph <-> ps ) <-> ( [ y / x ] ph <-> [ y / x ] ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfbi2 | |- ( ( ph <-> ps ) <-> ( ( ph -> ps ) /\ ( ps -> ph ) ) ) |
|
| 2 | 1 | sbbii | |- ( [ y / x ] ( ph <-> ps ) <-> [ y / x ] ( ( ph -> ps ) /\ ( ps -> ph ) ) ) |
| 3 | sbim | |- ( [ y / x ] ( ph -> ps ) <-> ( [ y / x ] ph -> [ y / x ] ps ) ) |
|
| 4 | sbim | |- ( [ y / x ] ( ps -> ph ) <-> ( [ y / x ] ps -> [ y / x ] ph ) ) |
|
| 5 | 3 4 | anbi12i | |- ( ( [ y / x ] ( ph -> ps ) /\ [ y / x ] ( ps -> ph ) ) <-> ( ( [ y / x ] ph -> [ y / x ] ps ) /\ ( [ y / x ] ps -> [ y / x ] ph ) ) ) |
| 6 | sban | |- ( [ y / x ] ( ( ph -> ps ) /\ ( ps -> ph ) ) <-> ( [ y / x ] ( ph -> ps ) /\ [ y / x ] ( ps -> ph ) ) ) |
|
| 7 | dfbi2 | |- ( ( [ y / x ] ph <-> [ y / x ] ps ) <-> ( ( [ y / x ] ph -> [ y / x ] ps ) /\ ( [ y / x ] ps -> [ y / x ] ph ) ) ) |
|
| 8 | 5 6 7 | 3bitr4i | |- ( [ y / x ] ( ( ph -> ps ) /\ ( ps -> ph ) ) <-> ( [ y / x ] ph <-> [ y / x ] ps ) ) |
| 9 | 2 8 | bitri | |- ( [ y / x ] ( ph <-> ps ) <-> ( [ y / x ] ph <-> [ y / x ] ps ) ) |