This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Move universal quantifier in and out of substitution. (Contributed by NM, 16-May-1993) (Proof shortened by Wolf Lammen, 29-Sep-2018) Reduce dependencies on axioms. (Revised by Steven Nguyen, 13-Aug-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbal | |- ( [ z / y ] A. x ph <-> A. x [ z / y ] ph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alcom | |- ( A. w A. x ( w = z -> A. y ( y = w -> ph ) ) <-> A. x A. w ( w = z -> A. y ( y = w -> ph ) ) ) |
|
| 2 | 19.21v | |- ( A. x ( y = w -> ph ) <-> ( y = w -> A. x ph ) ) |
|
| 3 | 2 | albii | |- ( A. y A. x ( y = w -> ph ) <-> A. y ( y = w -> A. x ph ) ) |
| 4 | alcom | |- ( A. y A. x ( y = w -> ph ) <-> A. x A. y ( y = w -> ph ) ) |
|
| 5 | 3 4 | bitr3i | |- ( A. y ( y = w -> A. x ph ) <-> A. x A. y ( y = w -> ph ) ) |
| 6 | 5 | imbi2i | |- ( ( w = z -> A. y ( y = w -> A. x ph ) ) <-> ( w = z -> A. x A. y ( y = w -> ph ) ) ) |
| 7 | 6 | albii | |- ( A. w ( w = z -> A. y ( y = w -> A. x ph ) ) <-> A. w ( w = z -> A. x A. y ( y = w -> ph ) ) ) |
| 8 | dfsb | |- ( [ z / y ] A. x ph <-> A. w ( w = z -> A. y ( y = w -> A. x ph ) ) ) |
|
| 9 | 19.21v | |- ( A. x ( w = z -> A. y ( y = w -> ph ) ) <-> ( w = z -> A. x A. y ( y = w -> ph ) ) ) |
|
| 10 | 9 | albii | |- ( A. w A. x ( w = z -> A. y ( y = w -> ph ) ) <-> A. w ( w = z -> A. x A. y ( y = w -> ph ) ) ) |
| 11 | 7 8 10 | 3bitr4i | |- ( [ z / y ] A. x ph <-> A. w A. x ( w = z -> A. y ( y = w -> ph ) ) ) |
| 12 | dfsb | |- ( [ z / y ] ph <-> A. w ( w = z -> A. y ( y = w -> ph ) ) ) |
|
| 13 | 12 | albii | |- ( A. x [ z / y ] ph <-> A. x A. w ( w = z -> A. y ( y = w -> ph ) ) ) |
| 14 | 1 11 13 | 3bitr4i | |- ( [ z / y ] A. x ph <-> A. x [ z / y ] ph ) |