This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Threefold conjunction inside and outside of a substitution are equivalent. (Contributed by NM, 14-Dec-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sb3an | ⊢ ( [ 𝑦 / 𝑥 ] ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ↔ ( [ 𝑦 / 𝑥 ] 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜓 ∧ [ 𝑦 / 𝑥 ] 𝜒 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sban | ⊢ ( [ 𝑦 / 𝑥 ] ( 𝜑 ∧ 𝜓 ) ↔ ( [ 𝑦 / 𝑥 ] 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) ) | |
| 2 | 1 | anbi1i | ⊢ ( ( [ 𝑦 / 𝑥 ] ( 𝜑 ∧ 𝜓 ) ∧ [ 𝑦 / 𝑥 ] 𝜒 ) ↔ ( ( [ 𝑦 / 𝑥 ] 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) ∧ [ 𝑦 / 𝑥 ] 𝜒 ) ) |
| 3 | df-3an | ⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ↔ ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) ) | |
| 4 | 3 | sbbii | ⊢ ( [ 𝑦 / 𝑥 ] ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ↔ [ 𝑦 / 𝑥 ] ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) ) |
| 5 | sban | ⊢ ( [ 𝑦 / 𝑥 ] ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) ↔ ( [ 𝑦 / 𝑥 ] ( 𝜑 ∧ 𝜓 ) ∧ [ 𝑦 / 𝑥 ] 𝜒 ) ) | |
| 6 | 4 5 | bitri | ⊢ ( [ 𝑦 / 𝑥 ] ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ↔ ( [ 𝑦 / 𝑥 ] ( 𝜑 ∧ 𝜓 ) ∧ [ 𝑦 / 𝑥 ] 𝜒 ) ) |
| 7 | df-3an | ⊢ ( ( [ 𝑦 / 𝑥 ] 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜓 ∧ [ 𝑦 / 𝑥 ] 𝜒 ) ↔ ( ( [ 𝑦 / 𝑥 ] 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) ∧ [ 𝑦 / 𝑥 ] 𝜒 ) ) | |
| 8 | 2 6 7 | 3bitr4i | ⊢ ( [ 𝑦 / 𝑥 ] ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ↔ ( [ 𝑦 / 𝑥 ] 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜓 ∧ [ 𝑦 / 𝑥 ] 𝜒 ) ) |