This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Threefold conjunction inside and outside of a substitution are equivalent. (Contributed by NM, 14-Dec-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sb3an | |- ( [ y / x ] ( ph /\ ps /\ ch ) <-> ( [ y / x ] ph /\ [ y / x ] ps /\ [ y / x ] ch ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sban | |- ( [ y / x ] ( ph /\ ps ) <-> ( [ y / x ] ph /\ [ y / x ] ps ) ) |
|
| 2 | 1 | anbi1i | |- ( ( [ y / x ] ( ph /\ ps ) /\ [ y / x ] ch ) <-> ( ( [ y / x ] ph /\ [ y / x ] ps ) /\ [ y / x ] ch ) ) |
| 3 | df-3an | |- ( ( ph /\ ps /\ ch ) <-> ( ( ph /\ ps ) /\ ch ) ) |
|
| 4 | 3 | sbbii | |- ( [ y / x ] ( ph /\ ps /\ ch ) <-> [ y / x ] ( ( ph /\ ps ) /\ ch ) ) |
| 5 | sban | |- ( [ y / x ] ( ( ph /\ ps ) /\ ch ) <-> ( [ y / x ] ( ph /\ ps ) /\ [ y / x ] ch ) ) |
|
| 6 | 4 5 | bitri | |- ( [ y / x ] ( ph /\ ps /\ ch ) <-> ( [ y / x ] ( ph /\ ps ) /\ [ y / x ] ch ) ) |
| 7 | df-3an | |- ( ( [ y / x ] ph /\ [ y / x ] ps /\ [ y / x ] ch ) <-> ( ( [ y / x ] ph /\ [ y / x ] ps ) /\ [ y / x ] ch ) ) |
|
| 8 | 2 6 7 | 3bitr4i | |- ( [ y / x ] ( ph /\ ps /\ ch ) <-> ( [ y / x ] ph /\ [ y / x ] ps /\ [ y / x ] ch ) ) |