This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for satf0suc , sat1el2xp and fmlasuc0 . (Contributed by AV, 19-Sep-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | satf0suclem | ⊢ ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ 𝑋 ( ∃ 𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃ 𝑤 ∈ 𝑍 𝑥 = 𝐶 ) ) } ∈ V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano1 | ⊢ ∅ ∈ ω | |
| 2 | eleq1 | ⊢ ( 𝑦 = ∅ → ( 𝑦 ∈ ω ↔ ∅ ∈ ω ) ) | |
| 3 | 1 2 | mpbiri | ⊢ ( 𝑦 = ∅ → 𝑦 ∈ ω ) |
| 4 | 3 | adantr | ⊢ ( ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ 𝑋 ( ∃ 𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃ 𝑤 ∈ 𝑍 𝑥 = 𝐶 ) ) → 𝑦 ∈ ω ) |
| 5 | 4 | pm4.71ri | ⊢ ( ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ 𝑋 ( ∃ 𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃ 𝑤 ∈ 𝑍 𝑥 = 𝐶 ) ) ↔ ( 𝑦 ∈ ω ∧ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ 𝑋 ( ∃ 𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃ 𝑤 ∈ 𝑍 𝑥 = 𝐶 ) ) ) ) |
| 6 | 5 | opabbii | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ 𝑋 ( ∃ 𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃ 𝑤 ∈ 𝑍 𝑥 = 𝐶 ) ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 ∈ ω ∧ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ 𝑋 ( ∃ 𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃ 𝑤 ∈ 𝑍 𝑥 = 𝐶 ) ) ) } |
| 7 | omex | ⊢ ω ∈ V | |
| 8 | 7 | a1i | ⊢ ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → ω ∈ V ) |
| 9 | simp1 | ⊢ ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → 𝑋 ∈ 𝑈 ) | |
| 10 | unab | ⊢ ( { 𝑥 ∣ ∃ 𝑣 ∈ 𝑌 𝑥 = 𝐵 } ∪ { 𝑥 ∣ ∃ 𝑤 ∈ 𝑍 𝑥 = 𝐶 } ) = { 𝑥 ∣ ( ∃ 𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃ 𝑤 ∈ 𝑍 𝑥 = 𝐶 ) } | |
| 11 | abrexexg | ⊢ ( 𝑌 ∈ 𝑉 → { 𝑥 ∣ ∃ 𝑣 ∈ 𝑌 𝑥 = 𝐵 } ∈ V ) | |
| 12 | 11 | 3ad2ant2 | ⊢ ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → { 𝑥 ∣ ∃ 𝑣 ∈ 𝑌 𝑥 = 𝐵 } ∈ V ) |
| 13 | abrexexg | ⊢ ( 𝑍 ∈ 𝑊 → { 𝑥 ∣ ∃ 𝑤 ∈ 𝑍 𝑥 = 𝐶 } ∈ V ) | |
| 14 | 13 | 3ad2ant3 | ⊢ ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → { 𝑥 ∣ ∃ 𝑤 ∈ 𝑍 𝑥 = 𝐶 } ∈ V ) |
| 15 | unexg | ⊢ ( ( { 𝑥 ∣ ∃ 𝑣 ∈ 𝑌 𝑥 = 𝐵 } ∈ V ∧ { 𝑥 ∣ ∃ 𝑤 ∈ 𝑍 𝑥 = 𝐶 } ∈ V ) → ( { 𝑥 ∣ ∃ 𝑣 ∈ 𝑌 𝑥 = 𝐵 } ∪ { 𝑥 ∣ ∃ 𝑤 ∈ 𝑍 𝑥 = 𝐶 } ) ∈ V ) | |
| 16 | 12 14 15 | syl2anc | ⊢ ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → ( { 𝑥 ∣ ∃ 𝑣 ∈ 𝑌 𝑥 = 𝐵 } ∪ { 𝑥 ∣ ∃ 𝑤 ∈ 𝑍 𝑥 = 𝐶 } ) ∈ V ) |
| 17 | 10 16 | eqeltrrid | ⊢ ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → { 𝑥 ∣ ( ∃ 𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃ 𝑤 ∈ 𝑍 𝑥 = 𝐶 ) } ∈ V ) |
| 18 | 17 | ralrimivw | ⊢ ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → ∀ 𝑢 ∈ 𝑋 { 𝑥 ∣ ( ∃ 𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃ 𝑤 ∈ 𝑍 𝑥 = 𝐶 ) } ∈ V ) |
| 19 | abrexex2g | ⊢ ( ( 𝑋 ∈ 𝑈 ∧ ∀ 𝑢 ∈ 𝑋 { 𝑥 ∣ ( ∃ 𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃ 𝑤 ∈ 𝑍 𝑥 = 𝐶 ) } ∈ V ) → { 𝑥 ∣ ∃ 𝑢 ∈ 𝑋 ( ∃ 𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃ 𝑤 ∈ 𝑍 𝑥 = 𝐶 ) } ∈ V ) | |
| 20 | 9 18 19 | syl2anc | ⊢ ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → { 𝑥 ∣ ∃ 𝑢 ∈ 𝑋 ( ∃ 𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃ 𝑤 ∈ 𝑍 𝑥 = 𝐶 ) } ∈ V ) |
| 21 | 20 | adantr | ⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑦 ∈ ω ) → { 𝑥 ∣ ∃ 𝑢 ∈ 𝑋 ( ∃ 𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃ 𝑤 ∈ 𝑍 𝑥 = 𝐶 ) } ∈ V ) |
| 22 | 8 21 | opabex3rd | ⊢ ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 ∈ ω ∧ ∃ 𝑢 ∈ 𝑋 ( ∃ 𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃ 𝑤 ∈ 𝑍 𝑥 = 𝐶 ) ) } ∈ V ) |
| 23 | simpr | ⊢ ( ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ 𝑋 ( ∃ 𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃ 𝑤 ∈ 𝑍 𝑥 = 𝐶 ) ) → ∃ 𝑢 ∈ 𝑋 ( ∃ 𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃ 𝑤 ∈ 𝑍 𝑥 = 𝐶 ) ) | |
| 24 | 23 | anim2i | ⊢ ( ( 𝑦 ∈ ω ∧ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ 𝑋 ( ∃ 𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃ 𝑤 ∈ 𝑍 𝑥 = 𝐶 ) ) ) → ( 𝑦 ∈ ω ∧ ∃ 𝑢 ∈ 𝑋 ( ∃ 𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃ 𝑤 ∈ 𝑍 𝑥 = 𝐶 ) ) ) |
| 25 | 24 | ssopab2i | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 ∈ ω ∧ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ 𝑋 ( ∃ 𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃ 𝑤 ∈ 𝑍 𝑥 = 𝐶 ) ) ) } ⊆ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 ∈ ω ∧ ∃ 𝑢 ∈ 𝑋 ( ∃ 𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃ 𝑤 ∈ 𝑍 𝑥 = 𝐶 ) ) } |
| 26 | 25 | a1i | ⊢ ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 ∈ ω ∧ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ 𝑋 ( ∃ 𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃ 𝑤 ∈ 𝑍 𝑥 = 𝐶 ) ) ) } ⊆ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 ∈ ω ∧ ∃ 𝑢 ∈ 𝑋 ( ∃ 𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃ 𝑤 ∈ 𝑍 𝑥 = 𝐶 ) ) } ) |
| 27 | 22 26 | ssexd | ⊢ ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 ∈ ω ∧ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ 𝑋 ( ∃ 𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃ 𝑤 ∈ 𝑍 𝑥 = 𝐶 ) ) ) } ∈ V ) |
| 28 | 6 27 | eqeltrid | ⊢ ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ 𝑋 ( ∃ 𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃ 𝑤 ∈ 𝑍 𝑥 = 𝐶 ) ) } ∈ V ) |