This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The result of the addition combined with scalar multiplication in a generalized Euclidean space is defined by its coordinate-wise operations. (Contributed by AV, 21-Jan-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rrxval.r | ⊢ 𝐻 = ( ℝ^ ‘ 𝐼 ) | |
| rrxbase.b | ⊢ 𝐵 = ( Base ‘ 𝐻 ) | ||
| rrxplusgvscavalb.r | ⊢ ∙ = ( ·𝑠 ‘ 𝐻 ) | ||
| rrxplusgvscavalb.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | ||
| rrxplusgvscavalb.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | ||
| rrxplusgvscavalb.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| rrxplusgvscavalb.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| rrxplusgvscavalb.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | ||
| rrxplusgvscavalb.p | ⊢ ✚ = ( +g ‘ 𝐻 ) | ||
| rrxplusgvscavalb.c | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) | ||
| Assertion | rrxplusgvscavalb | ⊢ ( 𝜑 → ( 𝑍 = ( ( 𝐴 ∙ 𝑋 ) ✚ ( 𝐶 ∙ 𝑌 ) ) ↔ ∀ 𝑖 ∈ 𝐼 ( 𝑍 ‘ 𝑖 ) = ( ( 𝐴 · ( 𝑋 ‘ 𝑖 ) ) + ( 𝐶 · ( 𝑌 ‘ 𝑖 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrxval.r | ⊢ 𝐻 = ( ℝ^ ‘ 𝐼 ) | |
| 2 | rrxbase.b | ⊢ 𝐵 = ( Base ‘ 𝐻 ) | |
| 3 | rrxplusgvscavalb.r | ⊢ ∙ = ( ·𝑠 ‘ 𝐻 ) | |
| 4 | rrxplusgvscavalb.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | |
| 5 | rrxplusgvscavalb.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 6 | rrxplusgvscavalb.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 7 | rrxplusgvscavalb.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 8 | rrxplusgvscavalb.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | |
| 9 | rrxplusgvscavalb.p | ⊢ ✚ = ( +g ‘ 𝐻 ) | |
| 10 | rrxplusgvscavalb.c | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) | |
| 11 | 1 | rrxval | ⊢ ( 𝐼 ∈ 𝑉 → 𝐻 = ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) |
| 12 | 4 11 | syl | ⊢ ( 𝜑 → 𝐻 = ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) |
| 13 | 12 | fveq2d | ⊢ ( 𝜑 → ( +g ‘ 𝐻 ) = ( +g ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) ) |
| 14 | 9 13 | eqtrid | ⊢ ( 𝜑 → ✚ = ( +g ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) ) |
| 15 | 12 | fveq2d | ⊢ ( 𝜑 → ( ·𝑠 ‘ 𝐻 ) = ( ·𝑠 ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) ) |
| 16 | 3 15 | eqtrid | ⊢ ( 𝜑 → ∙ = ( ·𝑠 ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) ) |
| 17 | 16 | oveqd | ⊢ ( 𝜑 → ( 𝐴 ∙ 𝑋 ) = ( 𝐴 ( ·𝑠 ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) 𝑋 ) ) |
| 18 | 16 | oveqd | ⊢ ( 𝜑 → ( 𝐶 ∙ 𝑌 ) = ( 𝐶 ( ·𝑠 ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) 𝑌 ) ) |
| 19 | 14 17 18 | oveq123d | ⊢ ( 𝜑 → ( ( 𝐴 ∙ 𝑋 ) ✚ ( 𝐶 ∙ 𝑌 ) ) = ( ( 𝐴 ( ·𝑠 ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) 𝑋 ) ( +g ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) ( 𝐶 ( ·𝑠 ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) 𝑌 ) ) ) |
| 20 | 19 | eqeq2d | ⊢ ( 𝜑 → ( 𝑍 = ( ( 𝐴 ∙ 𝑋 ) ✚ ( 𝐶 ∙ 𝑌 ) ) ↔ 𝑍 = ( ( 𝐴 ( ·𝑠 ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) 𝑋 ) ( +g ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) ( 𝐶 ( ·𝑠 ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) 𝑌 ) ) ) ) |
| 21 | eqid | ⊢ ( ℝfld freeLMod 𝐼 ) = ( ℝfld freeLMod 𝐼 ) | |
| 22 | eqid | ⊢ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) = ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) | |
| 23 | 12 | fveq2d | ⊢ ( 𝜑 → ( Base ‘ 𝐻 ) = ( Base ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) ) |
| 24 | eqid | ⊢ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) = ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) | |
| 25 | 24 22 | tcphbas | ⊢ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) = ( Base ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) |
| 26 | 23 2 25 | 3eqtr4g | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) |
| 27 | 6 26 | eleqtrd | ⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) |
| 28 | 8 26 | eleqtrd | ⊢ ( 𝜑 → 𝑍 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) |
| 29 | resrng | ⊢ ℝfld ∈ *-Ring | |
| 30 | srngring | ⊢ ( ℝfld ∈ *-Ring → ℝfld ∈ Ring ) | |
| 31 | 29 30 | mp1i | ⊢ ( 𝜑 → ℝfld ∈ Ring ) |
| 32 | rebase | ⊢ ℝ = ( Base ‘ ℝfld ) | |
| 33 | eqid | ⊢ ( ·𝑠 ‘ ( ℝfld freeLMod 𝐼 ) ) = ( ·𝑠 ‘ ( ℝfld freeLMod 𝐼 ) ) | |
| 34 | 24 33 | tcphvsca | ⊢ ( ·𝑠 ‘ ( ℝfld freeLMod 𝐼 ) ) = ( ·𝑠 ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) |
| 35 | 34 | eqcomi | ⊢ ( ·𝑠 ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) = ( ·𝑠 ‘ ( ℝfld freeLMod 𝐼 ) ) |
| 36 | remulr | ⊢ · = ( .r ‘ ℝfld ) | |
| 37 | 7 26 | eleqtrd | ⊢ ( 𝜑 → 𝑌 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) |
| 38 | replusg | ⊢ + = ( +g ‘ ℝfld ) | |
| 39 | eqid | ⊢ ( +g ‘ ( ℝfld freeLMod 𝐼 ) ) = ( +g ‘ ( ℝfld freeLMod 𝐼 ) ) | |
| 40 | 24 39 | tchplusg | ⊢ ( +g ‘ ( ℝfld freeLMod 𝐼 ) ) = ( +g ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) |
| 41 | 40 | eqcomi | ⊢ ( +g ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) = ( +g ‘ ( ℝfld freeLMod 𝐼 ) ) |
| 42 | 21 22 4 27 28 31 32 5 35 36 37 38 41 10 | frlmvplusgscavalb | ⊢ ( 𝜑 → ( 𝑍 = ( ( 𝐴 ( ·𝑠 ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) 𝑋 ) ( +g ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) ( 𝐶 ( ·𝑠 ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) 𝑌 ) ) ↔ ∀ 𝑖 ∈ 𝐼 ( 𝑍 ‘ 𝑖 ) = ( ( 𝐴 · ( 𝑋 ‘ 𝑖 ) ) + ( 𝐶 · ( 𝑌 ‘ 𝑖 ) ) ) ) ) |
| 43 | 20 42 | bitrd | ⊢ ( 𝜑 → ( 𝑍 = ( ( 𝐴 ∙ 𝑋 ) ✚ ( 𝐶 ∙ 𝑌 ) ) ↔ ∀ 𝑖 ∈ 𝐼 ( 𝑍 ‘ 𝑖 ) = ( ( 𝐴 · ( 𝑋 ‘ 𝑖 ) ) + ( 𝐶 · ( 𝑌 ‘ 𝑖 ) ) ) ) ) |