This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure law for rising factorial. (Contributed by Scott Fenton, 9-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rprisefaccl | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 RiseFac 𝑁 ) ∈ ℝ+ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpssre | ⊢ ℝ+ ⊆ ℝ | |
| 2 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 3 | 1 2 | sstri | ⊢ ℝ+ ⊆ ℂ |
| 4 | 1rp | ⊢ 1 ∈ ℝ+ | |
| 5 | rpmulcl | ⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ) → ( 𝑥 · 𝑦 ) ∈ ℝ+ ) | |
| 6 | rpre | ⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ ) | |
| 7 | nn0re | ⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℝ ) | |
| 8 | readdcl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℝ ) → ( 𝐴 + 𝑘 ) ∈ ℝ ) | |
| 9 | 6 7 8 | syl2an | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 + 𝑘 ) ∈ ℝ ) |
| 10 | 6 | adantr | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑘 ∈ ℕ0 ) → 𝐴 ∈ ℝ ) |
| 11 | 7 | adantl | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℝ ) |
| 12 | rpgt0 | ⊢ ( 𝐴 ∈ ℝ+ → 0 < 𝐴 ) | |
| 13 | 12 | adantr | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑘 ∈ ℕ0 ) → 0 < 𝐴 ) |
| 14 | nn0ge0 | ⊢ ( 𝑘 ∈ ℕ0 → 0 ≤ 𝑘 ) | |
| 15 | 14 | adantl | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑘 ∈ ℕ0 ) → 0 ≤ 𝑘 ) |
| 16 | 10 11 13 15 | addgtge0d | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑘 ∈ ℕ0 ) → 0 < ( 𝐴 + 𝑘 ) ) |
| 17 | 9 16 | elrpd | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 + 𝑘 ) ∈ ℝ+ ) |
| 18 | 3 4 5 17 | risefaccllem | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 RiseFac 𝑁 ) ∈ ℝ+ ) |