This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure law for rising factorial. (Contributed by Scott Fenton, 9-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rprisefaccl | |- ( ( A e. RR+ /\ N e. NN0 ) -> ( A RiseFac N ) e. RR+ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpssre | |- RR+ C_ RR |
|
| 2 | ax-resscn | |- RR C_ CC |
|
| 3 | 1 2 | sstri | |- RR+ C_ CC |
| 4 | 1rp | |- 1 e. RR+ |
|
| 5 | rpmulcl | |- ( ( x e. RR+ /\ y e. RR+ ) -> ( x x. y ) e. RR+ ) |
|
| 6 | rpre | |- ( A e. RR+ -> A e. RR ) |
|
| 7 | nn0re | |- ( k e. NN0 -> k e. RR ) |
|
| 8 | readdcl | |- ( ( A e. RR /\ k e. RR ) -> ( A + k ) e. RR ) |
|
| 9 | 6 7 8 | syl2an | |- ( ( A e. RR+ /\ k e. NN0 ) -> ( A + k ) e. RR ) |
| 10 | 6 | adantr | |- ( ( A e. RR+ /\ k e. NN0 ) -> A e. RR ) |
| 11 | 7 | adantl | |- ( ( A e. RR+ /\ k e. NN0 ) -> k e. RR ) |
| 12 | rpgt0 | |- ( A e. RR+ -> 0 < A ) |
|
| 13 | 12 | adantr | |- ( ( A e. RR+ /\ k e. NN0 ) -> 0 < A ) |
| 14 | nn0ge0 | |- ( k e. NN0 -> 0 <_ k ) |
|
| 15 | 14 | adantl | |- ( ( A e. RR+ /\ k e. NN0 ) -> 0 <_ k ) |
| 16 | 10 11 13 15 | addgtge0d | |- ( ( A e. RR+ /\ k e. NN0 ) -> 0 < ( A + k ) ) |
| 17 | 9 16 | elrpd | |- ( ( A e. RR+ /\ k e. NN0 ) -> ( A + k ) e. RR+ ) |
| 18 | 3 4 5 17 | risefaccllem | |- ( ( A e. RR+ /\ N e. NN0 ) -> ( A RiseFac N ) e. RR+ ) |