This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for rising factorial closure laws. (Contributed by Scott Fenton, 5-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | risefallfaccllem.1 | ⊢ 𝑆 ⊆ ℂ | |
| risefallfaccllem.2 | ⊢ 1 ∈ 𝑆 | ||
| risefallfaccllem.3 | ⊢ ( ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) → ( 𝑥 · 𝑦 ) ∈ 𝑆 ) | ||
| risefaccllem.4 | ⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 + 𝑘 ) ∈ 𝑆 ) | ||
| Assertion | risefaccllem | ⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 RiseFac 𝑁 ) ∈ 𝑆 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | risefallfaccllem.1 | ⊢ 𝑆 ⊆ ℂ | |
| 2 | risefallfaccllem.2 | ⊢ 1 ∈ 𝑆 | |
| 3 | risefallfaccllem.3 | ⊢ ( ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) → ( 𝑥 · 𝑦 ) ∈ 𝑆 ) | |
| 4 | risefaccllem.4 | ⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 + 𝑘 ) ∈ 𝑆 ) | |
| 5 | 1 | sseli | ⊢ ( 𝐴 ∈ 𝑆 → 𝐴 ∈ ℂ ) |
| 6 | risefacval | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 RiseFac 𝑁 ) = ∏ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( 𝐴 + 𝑘 ) ) | |
| 7 | 5 6 | sylan | ⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 RiseFac 𝑁 ) = ∏ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( 𝐴 + 𝑘 ) ) |
| 8 | 1 | a1i | ⊢ ( 𝐴 ∈ 𝑆 → 𝑆 ⊆ ℂ ) |
| 9 | 3 | adantl | ⊢ ( ( 𝐴 ∈ 𝑆 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 · 𝑦 ) ∈ 𝑆 ) |
| 10 | fzfid | ⊢ ( 𝐴 ∈ 𝑆 → ( 0 ... ( 𝑁 − 1 ) ) ∈ Fin ) | |
| 11 | elfznn0 | ⊢ ( 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) → 𝑘 ∈ ℕ0 ) | |
| 12 | 11 4 | sylan2 | ⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 𝐴 + 𝑘 ) ∈ 𝑆 ) |
| 13 | 2 | a1i | ⊢ ( 𝐴 ∈ 𝑆 → 1 ∈ 𝑆 ) |
| 14 | 8 9 10 12 13 | fprodcllem | ⊢ ( 𝐴 ∈ 𝑆 → ∏ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( 𝐴 + 𝑘 ) ∈ 𝑆 ) |
| 15 | 14 | adantr | ⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑁 ∈ ℕ0 ) → ∏ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( 𝐴 + 𝑘 ) ∈ 𝑆 ) |
| 16 | 7 15 | eqeltrd | ⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 RiseFac 𝑁 ) ∈ 𝑆 ) |