This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ring multiplication distributes over subtraction. (Contributed by Jeff Madsen, 19-Jun-2010)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ringsubdi.1 | ⊢ 𝐺 = ( 1st ‘ 𝑅 ) | |
| ringsubdi.2 | ⊢ 𝐻 = ( 2nd ‘ 𝑅 ) | ||
| ringsubdi.3 | ⊢ 𝑋 = ran 𝐺 | ||
| ringsubdi.4 | ⊢ 𝐷 = ( /𝑔 ‘ 𝐺 ) | ||
| Assertion | rngosubdi | ⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 𝐻 ( 𝐵 𝐷 𝐶 ) ) = ( ( 𝐴 𝐻 𝐵 ) 𝐷 ( 𝐴 𝐻 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringsubdi.1 | ⊢ 𝐺 = ( 1st ‘ 𝑅 ) | |
| 2 | ringsubdi.2 | ⊢ 𝐻 = ( 2nd ‘ 𝑅 ) | |
| 3 | ringsubdi.3 | ⊢ 𝑋 = ran 𝐺 | |
| 4 | ringsubdi.4 | ⊢ 𝐷 = ( /𝑔 ‘ 𝐺 ) | |
| 5 | eqid | ⊢ ( inv ‘ 𝐺 ) = ( inv ‘ 𝐺 ) | |
| 6 | 1 3 5 4 | rngosub | ⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐵 𝐷 𝐶 ) = ( 𝐵 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) ) ) |
| 7 | 6 | 3adant3r1 | ⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐵 𝐷 𝐶 ) = ( 𝐵 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) ) ) |
| 8 | 7 | oveq2d | ⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 𝐻 ( 𝐵 𝐷 𝐶 ) ) = ( 𝐴 𝐻 ( 𝐵 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) ) ) ) |
| 9 | 1 2 3 | rngocl | ⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐻 𝐵 ) ∈ 𝑋 ) |
| 10 | 9 | 3adant3r3 | ⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 𝐻 𝐵 ) ∈ 𝑋 ) |
| 11 | 1 2 3 | rngocl | ⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐴 𝐻 𝐶 ) ∈ 𝑋 ) |
| 12 | 11 | 3adant3r2 | ⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 𝐻 𝐶 ) ∈ 𝑋 ) |
| 13 | 10 12 | jca | ⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝐻 𝐵 ) ∈ 𝑋 ∧ ( 𝐴 𝐻 𝐶 ) ∈ 𝑋 ) ) |
| 14 | 1 3 5 4 | rngosub | ⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝐴 𝐻 𝐵 ) ∈ 𝑋 ∧ ( 𝐴 𝐻 𝐶 ) ∈ 𝑋 ) → ( ( 𝐴 𝐻 𝐵 ) 𝐷 ( 𝐴 𝐻 𝐶 ) ) = ( ( 𝐴 𝐻 𝐵 ) 𝐺 ( ( inv ‘ 𝐺 ) ‘ ( 𝐴 𝐻 𝐶 ) ) ) ) |
| 15 | 14 | 3expb | ⊢ ( ( 𝑅 ∈ RingOps ∧ ( ( 𝐴 𝐻 𝐵 ) ∈ 𝑋 ∧ ( 𝐴 𝐻 𝐶 ) ∈ 𝑋 ) ) → ( ( 𝐴 𝐻 𝐵 ) 𝐷 ( 𝐴 𝐻 𝐶 ) ) = ( ( 𝐴 𝐻 𝐵 ) 𝐺 ( ( inv ‘ 𝐺 ) ‘ ( 𝐴 𝐻 𝐶 ) ) ) ) |
| 16 | 13 15 | syldan | ⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝐻 𝐵 ) 𝐷 ( 𝐴 𝐻 𝐶 ) ) = ( ( 𝐴 𝐻 𝐵 ) 𝐺 ( ( inv ‘ 𝐺 ) ‘ ( 𝐴 𝐻 𝐶 ) ) ) ) |
| 17 | idd | ⊢ ( 𝑅 ∈ RingOps → ( 𝐴 ∈ 𝑋 → 𝐴 ∈ 𝑋 ) ) | |
| 18 | idd | ⊢ ( 𝑅 ∈ RingOps → ( 𝐵 ∈ 𝑋 → 𝐵 ∈ 𝑋 ) ) | |
| 19 | 1 3 5 | rngonegcl | ⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐶 ∈ 𝑋 ) → ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) ∈ 𝑋 ) |
| 20 | 19 | ex | ⊢ ( 𝑅 ∈ RingOps → ( 𝐶 ∈ 𝑋 → ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) ∈ 𝑋 ) ) |
| 21 | 17 18 20 | 3anim123d | ⊢ ( 𝑅 ∈ RingOps → ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) ∈ 𝑋 ) ) ) |
| 22 | 21 | imp | ⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) ∈ 𝑋 ) ) |
| 23 | 1 2 3 | rngodi | ⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) ∈ 𝑋 ) ) → ( 𝐴 𝐻 ( 𝐵 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) ) ) = ( ( 𝐴 𝐻 𝐵 ) 𝐺 ( 𝐴 𝐻 ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) ) ) ) |
| 24 | 22 23 | syldan | ⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 𝐻 ( 𝐵 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) ) ) = ( ( 𝐴 𝐻 𝐵 ) 𝐺 ( 𝐴 𝐻 ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) ) ) ) |
| 25 | 1 2 3 5 | rngonegrmul | ⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( ( inv ‘ 𝐺 ) ‘ ( 𝐴 𝐻 𝐶 ) ) = ( 𝐴 𝐻 ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) ) ) |
| 26 | 25 | 3adant3r2 | ⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( inv ‘ 𝐺 ) ‘ ( 𝐴 𝐻 𝐶 ) ) = ( 𝐴 𝐻 ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) ) ) |
| 27 | 26 | oveq2d | ⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝐻 𝐵 ) 𝐺 ( ( inv ‘ 𝐺 ) ‘ ( 𝐴 𝐻 𝐶 ) ) ) = ( ( 𝐴 𝐻 𝐵 ) 𝐺 ( 𝐴 𝐻 ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) ) ) ) |
| 28 | 24 27 | eqtr4d | ⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 𝐻 ( 𝐵 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) ) ) = ( ( 𝐴 𝐻 𝐵 ) 𝐺 ( ( inv ‘ 𝐺 ) ‘ ( 𝐴 𝐻 𝐶 ) ) ) ) |
| 29 | 16 28 | eqtr4d | ⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝐻 𝐵 ) 𝐷 ( 𝐴 𝐻 𝐶 ) ) = ( 𝐴 𝐻 ( 𝐵 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) ) ) ) |
| 30 | 8 29 | eqtr4d | ⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 𝐻 ( 𝐵 𝐷 𝐶 ) ) = ( ( 𝐴 𝐻 𝐵 ) 𝐷 ( 𝐴 𝐻 𝐶 ) ) ) |