This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Negation of a product in a ring. (Contributed by Jeff Madsen, 19-Jun-2010)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ringnegmul.1 | ⊢ 𝐺 = ( 1st ‘ 𝑅 ) | |
| ringnegmul.2 | ⊢ 𝐻 = ( 2nd ‘ 𝑅 ) | ||
| ringnegmul.3 | ⊢ 𝑋 = ran 𝐺 | ||
| ringnegmul.4 | ⊢ 𝑁 = ( inv ‘ 𝐺 ) | ||
| Assertion | rngonegrmul | ⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝐴 𝐻 𝐵 ) ) = ( 𝐴 𝐻 ( 𝑁 ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringnegmul.1 | ⊢ 𝐺 = ( 1st ‘ 𝑅 ) | |
| 2 | ringnegmul.2 | ⊢ 𝐻 = ( 2nd ‘ 𝑅 ) | |
| 3 | ringnegmul.3 | ⊢ 𝑋 = ran 𝐺 | |
| 4 | ringnegmul.4 | ⊢ 𝑁 = ( inv ‘ 𝐺 ) | |
| 5 | 1 | rneqi | ⊢ ran 𝐺 = ran ( 1st ‘ 𝑅 ) |
| 6 | 3 5 | eqtri | ⊢ 𝑋 = ran ( 1st ‘ 𝑅 ) |
| 7 | eqid | ⊢ ( GId ‘ 𝐻 ) = ( GId ‘ 𝐻 ) | |
| 8 | 6 2 7 | rngo1cl | ⊢ ( 𝑅 ∈ RingOps → ( GId ‘ 𝐻 ) ∈ 𝑋 ) |
| 9 | 1 3 4 | rngonegcl | ⊢ ( ( 𝑅 ∈ RingOps ∧ ( GId ‘ 𝐻 ) ∈ 𝑋 ) → ( 𝑁 ‘ ( GId ‘ 𝐻 ) ) ∈ 𝑋 ) |
| 10 | 8 9 | mpdan | ⊢ ( 𝑅 ∈ RingOps → ( 𝑁 ‘ ( GId ‘ 𝐻 ) ) ∈ 𝑋 ) |
| 11 | 1 2 3 | rngoass | ⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ( 𝑁 ‘ ( GId ‘ 𝐻 ) ) ∈ 𝑋 ) ) → ( ( 𝐴 𝐻 𝐵 ) 𝐻 ( 𝑁 ‘ ( GId ‘ 𝐻 ) ) ) = ( 𝐴 𝐻 ( 𝐵 𝐻 ( 𝑁 ‘ ( GId ‘ 𝐻 ) ) ) ) ) |
| 12 | 11 | 3exp2 | ⊢ ( 𝑅 ∈ RingOps → ( 𝐴 ∈ 𝑋 → ( 𝐵 ∈ 𝑋 → ( ( 𝑁 ‘ ( GId ‘ 𝐻 ) ) ∈ 𝑋 → ( ( 𝐴 𝐻 𝐵 ) 𝐻 ( 𝑁 ‘ ( GId ‘ 𝐻 ) ) ) = ( 𝐴 𝐻 ( 𝐵 𝐻 ( 𝑁 ‘ ( GId ‘ 𝐻 ) ) ) ) ) ) ) ) |
| 13 | 12 | com24 | ⊢ ( 𝑅 ∈ RingOps → ( ( 𝑁 ‘ ( GId ‘ 𝐻 ) ) ∈ 𝑋 → ( 𝐵 ∈ 𝑋 → ( 𝐴 ∈ 𝑋 → ( ( 𝐴 𝐻 𝐵 ) 𝐻 ( 𝑁 ‘ ( GId ‘ 𝐻 ) ) ) = ( 𝐴 𝐻 ( 𝐵 𝐻 ( 𝑁 ‘ ( GId ‘ 𝐻 ) ) ) ) ) ) ) ) |
| 14 | 13 | com34 | ⊢ ( 𝑅 ∈ RingOps → ( ( 𝑁 ‘ ( GId ‘ 𝐻 ) ) ∈ 𝑋 → ( 𝐴 ∈ 𝑋 → ( 𝐵 ∈ 𝑋 → ( ( 𝐴 𝐻 𝐵 ) 𝐻 ( 𝑁 ‘ ( GId ‘ 𝐻 ) ) ) = ( 𝐴 𝐻 ( 𝐵 𝐻 ( 𝑁 ‘ ( GId ‘ 𝐻 ) ) ) ) ) ) ) ) |
| 15 | 10 14 | mpd | ⊢ ( 𝑅 ∈ RingOps → ( 𝐴 ∈ 𝑋 → ( 𝐵 ∈ 𝑋 → ( ( 𝐴 𝐻 𝐵 ) 𝐻 ( 𝑁 ‘ ( GId ‘ 𝐻 ) ) ) = ( 𝐴 𝐻 ( 𝐵 𝐻 ( 𝑁 ‘ ( GId ‘ 𝐻 ) ) ) ) ) ) ) |
| 16 | 15 | 3imp | ⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 𝐻 𝐵 ) 𝐻 ( 𝑁 ‘ ( GId ‘ 𝐻 ) ) ) = ( 𝐴 𝐻 ( 𝐵 𝐻 ( 𝑁 ‘ ( GId ‘ 𝐻 ) ) ) ) ) |
| 17 | 1 2 3 | rngocl | ⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐻 𝐵 ) ∈ 𝑋 ) |
| 18 | 17 | 3expb | ⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝐴 𝐻 𝐵 ) ∈ 𝑋 ) |
| 19 | 1 2 3 4 7 | rngonegmn1r | ⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝐴 𝐻 𝐵 ) ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝐴 𝐻 𝐵 ) ) = ( ( 𝐴 𝐻 𝐵 ) 𝐻 ( 𝑁 ‘ ( GId ‘ 𝐻 ) ) ) ) |
| 20 | 18 19 | syldan | ⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝑁 ‘ ( 𝐴 𝐻 𝐵 ) ) = ( ( 𝐴 𝐻 𝐵 ) 𝐻 ( 𝑁 ‘ ( GId ‘ 𝐻 ) ) ) ) |
| 21 | 20 | 3impb | ⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝐴 𝐻 𝐵 ) ) = ( ( 𝐴 𝐻 𝐵 ) 𝐻 ( 𝑁 ‘ ( GId ‘ 𝐻 ) ) ) ) |
| 22 | 1 2 3 4 7 | rngonegmn1r | ⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐵 ∈ 𝑋 ) → ( 𝑁 ‘ 𝐵 ) = ( 𝐵 𝐻 ( 𝑁 ‘ ( GId ‘ 𝐻 ) ) ) ) |
| 23 | 22 | 3adant2 | ⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑁 ‘ 𝐵 ) = ( 𝐵 𝐻 ( 𝑁 ‘ ( GId ‘ 𝐻 ) ) ) ) |
| 24 | 23 | oveq2d | ⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐻 ( 𝑁 ‘ 𝐵 ) ) = ( 𝐴 𝐻 ( 𝐵 𝐻 ( 𝑁 ‘ ( GId ‘ 𝐻 ) ) ) ) ) |
| 25 | 16 21 24 | 3eqtr4d | ⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝐴 𝐻 𝐵 ) ) = ( 𝐴 𝐻 ( 𝑁 ‘ 𝐵 ) ) ) |