This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ring multiplication distributes over subtraction. (Contributed by Jeff Madsen, 19-Jun-2010)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ringsubdi.1 | |- G = ( 1st ` R ) |
|
| ringsubdi.2 | |- H = ( 2nd ` R ) |
||
| ringsubdi.3 | |- X = ran G |
||
| ringsubdi.4 | |- D = ( /g ` G ) |
||
| Assertion | rngosubdi | |- ( ( R e. RingOps /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A H ( B D C ) ) = ( ( A H B ) D ( A H C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringsubdi.1 | |- G = ( 1st ` R ) |
|
| 2 | ringsubdi.2 | |- H = ( 2nd ` R ) |
|
| 3 | ringsubdi.3 | |- X = ran G |
|
| 4 | ringsubdi.4 | |- D = ( /g ` G ) |
|
| 5 | eqid | |- ( inv ` G ) = ( inv ` G ) |
|
| 6 | 1 3 5 4 | rngosub | |- ( ( R e. RingOps /\ B e. X /\ C e. X ) -> ( B D C ) = ( B G ( ( inv ` G ) ` C ) ) ) |
| 7 | 6 | 3adant3r1 | |- ( ( R e. RingOps /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( B D C ) = ( B G ( ( inv ` G ) ` C ) ) ) |
| 8 | 7 | oveq2d | |- ( ( R e. RingOps /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A H ( B D C ) ) = ( A H ( B G ( ( inv ` G ) ` C ) ) ) ) |
| 9 | 1 2 3 | rngocl | |- ( ( R e. RingOps /\ A e. X /\ B e. X ) -> ( A H B ) e. X ) |
| 10 | 9 | 3adant3r3 | |- ( ( R e. RingOps /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A H B ) e. X ) |
| 11 | 1 2 3 | rngocl | |- ( ( R e. RingOps /\ A e. X /\ C e. X ) -> ( A H C ) e. X ) |
| 12 | 11 | 3adant3r2 | |- ( ( R e. RingOps /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A H C ) e. X ) |
| 13 | 10 12 | jca | |- ( ( R e. RingOps /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A H B ) e. X /\ ( A H C ) e. X ) ) |
| 14 | 1 3 5 4 | rngosub | |- ( ( R e. RingOps /\ ( A H B ) e. X /\ ( A H C ) e. X ) -> ( ( A H B ) D ( A H C ) ) = ( ( A H B ) G ( ( inv ` G ) ` ( A H C ) ) ) ) |
| 15 | 14 | 3expb | |- ( ( R e. RingOps /\ ( ( A H B ) e. X /\ ( A H C ) e. X ) ) -> ( ( A H B ) D ( A H C ) ) = ( ( A H B ) G ( ( inv ` G ) ` ( A H C ) ) ) ) |
| 16 | 13 15 | syldan | |- ( ( R e. RingOps /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A H B ) D ( A H C ) ) = ( ( A H B ) G ( ( inv ` G ) ` ( A H C ) ) ) ) |
| 17 | idd | |- ( R e. RingOps -> ( A e. X -> A e. X ) ) |
|
| 18 | idd | |- ( R e. RingOps -> ( B e. X -> B e. X ) ) |
|
| 19 | 1 3 5 | rngonegcl | |- ( ( R e. RingOps /\ C e. X ) -> ( ( inv ` G ) ` C ) e. X ) |
| 20 | 19 | ex | |- ( R e. RingOps -> ( C e. X -> ( ( inv ` G ) ` C ) e. X ) ) |
| 21 | 17 18 20 | 3anim123d | |- ( R e. RingOps -> ( ( A e. X /\ B e. X /\ C e. X ) -> ( A e. X /\ B e. X /\ ( ( inv ` G ) ` C ) e. X ) ) ) |
| 22 | 21 | imp | |- ( ( R e. RingOps /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A e. X /\ B e. X /\ ( ( inv ` G ) ` C ) e. X ) ) |
| 23 | 1 2 3 | rngodi | |- ( ( R e. RingOps /\ ( A e. X /\ B e. X /\ ( ( inv ` G ) ` C ) e. X ) ) -> ( A H ( B G ( ( inv ` G ) ` C ) ) ) = ( ( A H B ) G ( A H ( ( inv ` G ) ` C ) ) ) ) |
| 24 | 22 23 | syldan | |- ( ( R e. RingOps /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A H ( B G ( ( inv ` G ) ` C ) ) ) = ( ( A H B ) G ( A H ( ( inv ` G ) ` C ) ) ) ) |
| 25 | 1 2 3 5 | rngonegrmul | |- ( ( R e. RingOps /\ A e. X /\ C e. X ) -> ( ( inv ` G ) ` ( A H C ) ) = ( A H ( ( inv ` G ) ` C ) ) ) |
| 26 | 25 | 3adant3r2 | |- ( ( R e. RingOps /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( inv ` G ) ` ( A H C ) ) = ( A H ( ( inv ` G ) ` C ) ) ) |
| 27 | 26 | oveq2d | |- ( ( R e. RingOps /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A H B ) G ( ( inv ` G ) ` ( A H C ) ) ) = ( ( A H B ) G ( A H ( ( inv ` G ) ` C ) ) ) ) |
| 28 | 24 27 | eqtr4d | |- ( ( R e. RingOps /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A H ( B G ( ( inv ` G ) ` C ) ) ) = ( ( A H B ) G ( ( inv ` G ) ` ( A H C ) ) ) ) |
| 29 | 16 28 | eqtr4d | |- ( ( R e. RingOps /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A H B ) D ( A H C ) ) = ( A H ( B G ( ( inv ` G ) ` C ) ) ) ) |
| 30 | 8 29 | eqtr4d | |- ( ( R e. RingOps /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A H ( B D C ) ) = ( ( A H B ) D ( A H C ) ) ) |