This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Negation of a product in a ring. (Contributed by Jeff Madsen, 19-Jun-2010)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ringnegmul.1 | |- G = ( 1st ` R ) |
|
| ringnegmul.2 | |- H = ( 2nd ` R ) |
||
| ringnegmul.3 | |- X = ran G |
||
| ringnegmul.4 | |- N = ( inv ` G ) |
||
| Assertion | rngonegrmul | |- ( ( R e. RingOps /\ A e. X /\ B e. X ) -> ( N ` ( A H B ) ) = ( A H ( N ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringnegmul.1 | |- G = ( 1st ` R ) |
|
| 2 | ringnegmul.2 | |- H = ( 2nd ` R ) |
|
| 3 | ringnegmul.3 | |- X = ran G |
|
| 4 | ringnegmul.4 | |- N = ( inv ` G ) |
|
| 5 | 1 | rneqi | |- ran G = ran ( 1st ` R ) |
| 6 | 3 5 | eqtri | |- X = ran ( 1st ` R ) |
| 7 | eqid | |- ( GId ` H ) = ( GId ` H ) |
|
| 8 | 6 2 7 | rngo1cl | |- ( R e. RingOps -> ( GId ` H ) e. X ) |
| 9 | 1 3 4 | rngonegcl | |- ( ( R e. RingOps /\ ( GId ` H ) e. X ) -> ( N ` ( GId ` H ) ) e. X ) |
| 10 | 8 9 | mpdan | |- ( R e. RingOps -> ( N ` ( GId ` H ) ) e. X ) |
| 11 | 1 2 3 | rngoass | |- ( ( R e. RingOps /\ ( A e. X /\ B e. X /\ ( N ` ( GId ` H ) ) e. X ) ) -> ( ( A H B ) H ( N ` ( GId ` H ) ) ) = ( A H ( B H ( N ` ( GId ` H ) ) ) ) ) |
| 12 | 11 | 3exp2 | |- ( R e. RingOps -> ( A e. X -> ( B e. X -> ( ( N ` ( GId ` H ) ) e. X -> ( ( A H B ) H ( N ` ( GId ` H ) ) ) = ( A H ( B H ( N ` ( GId ` H ) ) ) ) ) ) ) ) |
| 13 | 12 | com24 | |- ( R e. RingOps -> ( ( N ` ( GId ` H ) ) e. X -> ( B e. X -> ( A e. X -> ( ( A H B ) H ( N ` ( GId ` H ) ) ) = ( A H ( B H ( N ` ( GId ` H ) ) ) ) ) ) ) ) |
| 14 | 13 | com34 | |- ( R e. RingOps -> ( ( N ` ( GId ` H ) ) e. X -> ( A e. X -> ( B e. X -> ( ( A H B ) H ( N ` ( GId ` H ) ) ) = ( A H ( B H ( N ` ( GId ` H ) ) ) ) ) ) ) ) |
| 15 | 10 14 | mpd | |- ( R e. RingOps -> ( A e. X -> ( B e. X -> ( ( A H B ) H ( N ` ( GId ` H ) ) ) = ( A H ( B H ( N ` ( GId ` H ) ) ) ) ) ) ) |
| 16 | 15 | 3imp | |- ( ( R e. RingOps /\ A e. X /\ B e. X ) -> ( ( A H B ) H ( N ` ( GId ` H ) ) ) = ( A H ( B H ( N ` ( GId ` H ) ) ) ) ) |
| 17 | 1 2 3 | rngocl | |- ( ( R e. RingOps /\ A e. X /\ B e. X ) -> ( A H B ) e. X ) |
| 18 | 17 | 3expb | |- ( ( R e. RingOps /\ ( A e. X /\ B e. X ) ) -> ( A H B ) e. X ) |
| 19 | 1 2 3 4 7 | rngonegmn1r | |- ( ( R e. RingOps /\ ( A H B ) e. X ) -> ( N ` ( A H B ) ) = ( ( A H B ) H ( N ` ( GId ` H ) ) ) ) |
| 20 | 18 19 | syldan | |- ( ( R e. RingOps /\ ( A e. X /\ B e. X ) ) -> ( N ` ( A H B ) ) = ( ( A H B ) H ( N ` ( GId ` H ) ) ) ) |
| 21 | 20 | 3impb | |- ( ( R e. RingOps /\ A e. X /\ B e. X ) -> ( N ` ( A H B ) ) = ( ( A H B ) H ( N ` ( GId ` H ) ) ) ) |
| 22 | 1 2 3 4 7 | rngonegmn1r | |- ( ( R e. RingOps /\ B e. X ) -> ( N ` B ) = ( B H ( N ` ( GId ` H ) ) ) ) |
| 23 | 22 | 3adant2 | |- ( ( R e. RingOps /\ A e. X /\ B e. X ) -> ( N ` B ) = ( B H ( N ` ( GId ` H ) ) ) ) |
| 24 | 23 | oveq2d | |- ( ( R e. RingOps /\ A e. X /\ B e. X ) -> ( A H ( N ` B ) ) = ( A H ( B H ( N ` ( GId ` H ) ) ) ) ) |
| 25 | 16 21 24 | 3eqtr4d | |- ( ( R e. RingOps /\ A e. X /\ B e. X ) -> ( N ` ( A H B ) ) = ( A H ( N ` B ) ) ) |