This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An isomorphism of non-unital rings is a homomorphism whose converse is also a homomorphism. (Contributed by AV, 22-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isrngim | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ) → ( 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ↔ ( 𝐹 ∈ ( 𝑅 RngHom 𝑆 ) ∧ ◡ 𝐹 ∈ ( 𝑆 RngHom 𝑅 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rngim | ⊢ RngIso = ( 𝑟 ∈ V , 𝑠 ∈ V ↦ { 𝑓 ∈ ( 𝑟 RngHom 𝑠 ) ∣ ◡ 𝑓 ∈ ( 𝑠 RngHom 𝑟 ) } ) | |
| 2 | 1 | a1i | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ) → RngIso = ( 𝑟 ∈ V , 𝑠 ∈ V ↦ { 𝑓 ∈ ( 𝑟 RngHom 𝑠 ) ∣ ◡ 𝑓 ∈ ( 𝑠 RngHom 𝑟 ) } ) ) |
| 3 | oveq12 | ⊢ ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) → ( 𝑟 RngHom 𝑠 ) = ( 𝑅 RngHom 𝑆 ) ) | |
| 4 | 3 | adantl | ⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ) ∧ ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) ) → ( 𝑟 RngHom 𝑠 ) = ( 𝑅 RngHom 𝑆 ) ) |
| 5 | oveq12 | ⊢ ( ( 𝑠 = 𝑆 ∧ 𝑟 = 𝑅 ) → ( 𝑠 RngHom 𝑟 ) = ( 𝑆 RngHom 𝑅 ) ) | |
| 6 | 5 | ancoms | ⊢ ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) → ( 𝑠 RngHom 𝑟 ) = ( 𝑆 RngHom 𝑅 ) ) |
| 7 | 6 | adantl | ⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ) ∧ ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) ) → ( 𝑠 RngHom 𝑟 ) = ( 𝑆 RngHom 𝑅 ) ) |
| 8 | 7 | eleq2d | ⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ) ∧ ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) ) → ( ◡ 𝑓 ∈ ( 𝑠 RngHom 𝑟 ) ↔ ◡ 𝑓 ∈ ( 𝑆 RngHom 𝑅 ) ) ) |
| 9 | 4 8 | rabeqbidv | ⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ) ∧ ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) ) → { 𝑓 ∈ ( 𝑟 RngHom 𝑠 ) ∣ ◡ 𝑓 ∈ ( 𝑠 RngHom 𝑟 ) } = { 𝑓 ∈ ( 𝑅 RngHom 𝑆 ) ∣ ◡ 𝑓 ∈ ( 𝑆 RngHom 𝑅 ) } ) |
| 10 | elex | ⊢ ( 𝑅 ∈ 𝑉 → 𝑅 ∈ V ) | |
| 11 | 10 | adantr | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ) → 𝑅 ∈ V ) |
| 12 | elex | ⊢ ( 𝑆 ∈ 𝑊 → 𝑆 ∈ V ) | |
| 13 | 12 | adantl | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ) → 𝑆 ∈ V ) |
| 14 | ovex | ⊢ ( 𝑅 RngHom 𝑆 ) ∈ V | |
| 15 | 14 | rabex | ⊢ { 𝑓 ∈ ( 𝑅 RngHom 𝑆 ) ∣ ◡ 𝑓 ∈ ( 𝑆 RngHom 𝑅 ) } ∈ V |
| 16 | 15 | a1i | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ) → { 𝑓 ∈ ( 𝑅 RngHom 𝑆 ) ∣ ◡ 𝑓 ∈ ( 𝑆 RngHom 𝑅 ) } ∈ V ) |
| 17 | 2 9 11 13 16 | ovmpod | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ) → ( 𝑅 RngIso 𝑆 ) = { 𝑓 ∈ ( 𝑅 RngHom 𝑆 ) ∣ ◡ 𝑓 ∈ ( 𝑆 RngHom 𝑅 ) } ) |
| 18 | 17 | eleq2d | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ) → ( 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ↔ 𝐹 ∈ { 𝑓 ∈ ( 𝑅 RngHom 𝑆 ) ∣ ◡ 𝑓 ∈ ( 𝑆 RngHom 𝑅 ) } ) ) |
| 19 | cnveq | ⊢ ( 𝑓 = 𝐹 → ◡ 𝑓 = ◡ 𝐹 ) | |
| 20 | 19 | eleq1d | ⊢ ( 𝑓 = 𝐹 → ( ◡ 𝑓 ∈ ( 𝑆 RngHom 𝑅 ) ↔ ◡ 𝐹 ∈ ( 𝑆 RngHom 𝑅 ) ) ) |
| 21 | 20 | elrab | ⊢ ( 𝐹 ∈ { 𝑓 ∈ ( 𝑅 RngHom 𝑆 ) ∣ ◡ 𝑓 ∈ ( 𝑆 RngHom 𝑅 ) } ↔ ( 𝐹 ∈ ( 𝑅 RngHom 𝑆 ) ∧ ◡ 𝐹 ∈ ( 𝑆 RngHom 𝑅 ) ) ) |
| 22 | 18 21 | bitrdi | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ) → ( 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ↔ ( 𝐹 ∈ ( 𝑅 RngHom 𝑆 ) ∧ ◡ 𝐹 ∈ ( 𝑆 RngHom 𝑅 ) ) ) ) |