This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The (smallest) structure representing a zero ring is not a nonzero ring. (Contributed by AV, 29-Apr-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rng1nnzr.m | ⊢ 𝑀 = { 〈 ( Base ‘ ndx ) , { 𝑍 } 〉 , 〈 ( +g ‘ ndx ) , { 〈 〈 𝑍 , 𝑍 〉 , 𝑍 〉 } 〉 , 〈 ( .r ‘ ndx ) , { 〈 〈 𝑍 , 𝑍 〉 , 𝑍 〉 } 〉 } | |
| Assertion | rng1nnzr | ⊢ ( 𝑍 ∈ 𝑉 → 𝑀 ∉ NzRing ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rng1nnzr.m | ⊢ 𝑀 = { 〈 ( Base ‘ ndx ) , { 𝑍 } 〉 , 〈 ( +g ‘ ndx ) , { 〈 〈 𝑍 , 𝑍 〉 , 𝑍 〉 } 〉 , 〈 ( .r ‘ ndx ) , { 〈 〈 𝑍 , 𝑍 〉 , 𝑍 〉 } 〉 } | |
| 2 | snex | ⊢ { 𝑍 } ∈ V | |
| 3 | 1 | rngbase | ⊢ ( { 𝑍 } ∈ V → { 𝑍 } = ( Base ‘ 𝑀 ) ) |
| 4 | 2 3 | mp1i | ⊢ ( 𝑍 ∈ 𝑉 → { 𝑍 } = ( Base ‘ 𝑀 ) ) |
| 5 | 4 | eqcomd | ⊢ ( 𝑍 ∈ 𝑉 → ( Base ‘ 𝑀 ) = { 𝑍 } ) |
| 6 | 5 | fveq2d | ⊢ ( 𝑍 ∈ 𝑉 → ( ♯ ‘ ( Base ‘ 𝑀 ) ) = ( ♯ ‘ { 𝑍 } ) ) |
| 7 | hashsng | ⊢ ( 𝑍 ∈ 𝑉 → ( ♯ ‘ { 𝑍 } ) = 1 ) | |
| 8 | 6 7 | eqtrd | ⊢ ( 𝑍 ∈ 𝑉 → ( ♯ ‘ ( Base ‘ 𝑀 ) ) = 1 ) |
| 9 | 1 | ring1 | ⊢ ( 𝑍 ∈ 𝑉 → 𝑀 ∈ Ring ) |
| 10 | 0ringnnzr | ⊢ ( 𝑀 ∈ Ring → ( ( ♯ ‘ ( Base ‘ 𝑀 ) ) = 1 ↔ ¬ 𝑀 ∈ NzRing ) ) | |
| 11 | 9 10 | syl | ⊢ ( 𝑍 ∈ 𝑉 → ( ( ♯ ‘ ( Base ‘ 𝑀 ) ) = 1 ↔ ¬ 𝑀 ∈ NzRing ) ) |
| 12 | 8 11 | mpbid | ⊢ ( 𝑍 ∈ 𝑉 → ¬ 𝑀 ∈ NzRing ) |
| 13 | df-nel | ⊢ ( 𝑀 ∉ NzRing ↔ ¬ 𝑀 ∈ NzRing ) | |
| 14 | 12 13 | sylibr | ⊢ ( 𝑍 ∈ 𝑉 → 𝑀 ∉ NzRing ) |