This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Range of a composition. (Contributed by NM, 19-Mar-1998)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rncoeq | |- ( dom A = ran B -> ran ( A o. B ) = ran A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmcoeq | |- ( dom `' B = ran `' A -> dom ( `' B o. `' A ) = dom `' A ) |
|
| 2 | eqcom | |- ( dom A = ran B <-> ran B = dom A ) |
|
| 3 | df-rn | |- ran B = dom `' B |
|
| 4 | dfdm4 | |- dom A = ran `' A |
|
| 5 | 3 4 | eqeq12i | |- ( ran B = dom A <-> dom `' B = ran `' A ) |
| 6 | 2 5 | bitri | |- ( dom A = ran B <-> dom `' B = ran `' A ) |
| 7 | df-rn | |- ran ( A o. B ) = dom `' ( A o. B ) |
|
| 8 | cnvco | |- `' ( A o. B ) = ( `' B o. `' A ) |
|
| 9 | 8 | dmeqi | |- dom `' ( A o. B ) = dom ( `' B o. `' A ) |
| 10 | 7 9 | eqtri | |- ran ( A o. B ) = dom ( `' B o. `' A ) |
| 11 | df-rn | |- ran A = dom `' A |
|
| 12 | 10 11 | eqeq12i | |- ( ran ( A o. B ) = ran A <-> dom ( `' B o. `' A ) = dom `' A ) |
| 13 | 1 6 12 | 3imtr4i | |- ( dom A = ran B -> ran ( A o. B ) = ran A ) |