This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Consequence of "restricted at most one". (Contributed by Thierry Arnoux, 9-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rmoi2.1 | ⊢ ( 𝑥 = 𝐵 → ( 𝜓 ↔ 𝜒 ) ) | |
| rmoi2.2 | ⊢ ( 𝜑 → 𝐵 ∈ 𝐴 ) | ||
| rmoi2.3 | ⊢ ( 𝜑 → ∃* 𝑥 ∈ 𝐴 𝜓 ) | ||
| rmoi2.4 | ⊢ ( 𝜑 → 𝑥 ∈ 𝐴 ) | ||
| rmoi2.5 | ⊢ ( 𝜑 → 𝜓 ) | ||
| Assertion | rmob2 | ⊢ ( 𝜑 → ( 𝑥 = 𝐵 ↔ 𝜒 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rmoi2.1 | ⊢ ( 𝑥 = 𝐵 → ( 𝜓 ↔ 𝜒 ) ) | |
| 2 | rmoi2.2 | ⊢ ( 𝜑 → 𝐵 ∈ 𝐴 ) | |
| 3 | rmoi2.3 | ⊢ ( 𝜑 → ∃* 𝑥 ∈ 𝐴 𝜓 ) | |
| 4 | rmoi2.4 | ⊢ ( 𝜑 → 𝑥 ∈ 𝐴 ) | |
| 5 | rmoi2.5 | ⊢ ( 𝜑 → 𝜓 ) | |
| 6 | df-rmo | ⊢ ( ∃* 𝑥 ∈ 𝐴 𝜓 ↔ ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) | |
| 7 | 3 6 | sylib | ⊢ ( 𝜑 → ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) |
| 8 | eleq1 | ⊢ ( 𝑥 = 𝐵 → ( 𝑥 ∈ 𝐴 ↔ 𝐵 ∈ 𝐴 ) ) | |
| 9 | 8 1 | anbi12d | ⊢ ( 𝑥 = 𝐵 → ( ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ↔ ( 𝐵 ∈ 𝐴 ∧ 𝜒 ) ) ) |
| 10 | 9 | mob2 | ⊢ ( ( 𝐵 ∈ 𝐴 ∧ ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) → ( 𝑥 = 𝐵 ↔ ( 𝐵 ∈ 𝐴 ∧ 𝜒 ) ) ) |
| 11 | 2 7 4 5 10 | syl112anc | ⊢ ( 𝜑 → ( 𝑥 = 𝐵 ↔ ( 𝐵 ∈ 𝐴 ∧ 𝜒 ) ) ) |
| 12 | 2 11 | mpbirand | ⊢ ( 𝜑 → ( 𝑥 = 𝐵 ↔ 𝜒 ) ) |