This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Consequence of "at most one". (Contributed by NM, 2-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | moi2.1 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| Assertion | mob2 | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ ∃* 𝑥 𝜑 ∧ 𝜑 ) → ( 𝑥 = 𝐴 ↔ 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | moi2.1 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | simp3 | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ ∃* 𝑥 𝜑 ∧ 𝜑 ) → 𝜑 ) | |
| 3 | 2 1 | syl5ibcom | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ ∃* 𝑥 𝜑 ∧ 𝜑 ) → ( 𝑥 = 𝐴 → 𝜓 ) ) |
| 4 | nfv | ⊢ Ⅎ 𝑥 𝜓 | |
| 5 | 4 1 | sbhypf | ⊢ ( 𝑦 = 𝐴 → ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝜓 ) ) |
| 6 | 5 | anbi2d | ⊢ ( 𝑦 = 𝐴 → ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ↔ ( 𝜑 ∧ 𝜓 ) ) ) |
| 7 | eqeq2 | ⊢ ( 𝑦 = 𝐴 → ( 𝑥 = 𝑦 ↔ 𝑥 = 𝐴 ) ) | |
| 8 | 6 7 | imbi12d | ⊢ ( 𝑦 = 𝐴 → ( ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ↔ ( ( 𝜑 ∧ 𝜓 ) → 𝑥 = 𝐴 ) ) ) |
| 9 | 8 | spcgv | ⊢ ( 𝐴 ∈ 𝐵 → ( ∀ 𝑦 ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) → ( ( 𝜑 ∧ 𝜓 ) → 𝑥 = 𝐴 ) ) ) |
| 10 | nfs1v | ⊢ Ⅎ 𝑥 [ 𝑦 / 𝑥 ] 𝜑 | |
| 11 | sbequ12 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ [ 𝑦 / 𝑥 ] 𝜑 ) ) | |
| 12 | 10 11 | mo4f | ⊢ ( ∃* 𝑥 𝜑 ↔ ∀ 𝑥 ∀ 𝑦 ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) |
| 13 | sp | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) → ∀ 𝑦 ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) | |
| 14 | 12 13 | sylbi | ⊢ ( ∃* 𝑥 𝜑 → ∀ 𝑦 ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) |
| 15 | 9 14 | impel | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ ∃* 𝑥 𝜑 ) → ( ( 𝜑 ∧ 𝜓 ) → 𝑥 = 𝐴 ) ) |
| 16 | 15 | expd | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ ∃* 𝑥 𝜑 ) → ( 𝜑 → ( 𝜓 → 𝑥 = 𝐴 ) ) ) |
| 17 | 16 | 3impia | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ ∃* 𝑥 𝜑 ∧ 𝜑 ) → ( 𝜓 → 𝑥 = 𝐴 ) ) |
| 18 | 3 17 | impbid | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ ∃* 𝑥 𝜑 ∧ 𝜑 ) → ( 𝑥 = 𝐴 ↔ 𝜓 ) ) |