This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restricted "at most one" using implicit substitution. (Contributed by NM, 24-Oct-2006) (Revised by Thierry Arnoux, 11-Oct-2016) (Revised by Thierry Arnoux, 8-Mar-2017) (Revised by Thierry Arnoux, 8-Oct-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rmo4f.1 | ⊢ Ⅎ 𝑥 𝐴 | |
| rmo4f.2 | ⊢ Ⅎ 𝑦 𝐴 | ||
| rmo4f.3 | ⊢ Ⅎ 𝑥 𝜓 | ||
| rmo4f.4 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | ||
| Assertion | rmo4f | ⊢ ( ∃* 𝑥 ∈ 𝐴 𝜑 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝜑 ∧ 𝜓 ) → 𝑥 = 𝑦 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rmo4f.1 | ⊢ Ⅎ 𝑥 𝐴 | |
| 2 | rmo4f.2 | ⊢ Ⅎ 𝑦 𝐴 | |
| 3 | rmo4f.3 | ⊢ Ⅎ 𝑥 𝜓 | |
| 4 | rmo4f.4 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | |
| 5 | nfv | ⊢ Ⅎ 𝑦 𝜑 | |
| 6 | 1 2 5 | rmo3f | ⊢ ( ∃* 𝑥 ∈ 𝐴 𝜑 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) |
| 7 | 3 4 | sbiev | ⊢ ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝜓 ) |
| 8 | 7 | anbi2i | ⊢ ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ↔ ( 𝜑 ∧ 𝜓 ) ) |
| 9 | 8 | imbi1i | ⊢ ( ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ↔ ( ( 𝜑 ∧ 𝜓 ) → 𝑥 = 𝑦 ) ) |
| 10 | 9 | 2ralbii | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝜑 ∧ 𝜓 ) → 𝑥 = 𝑦 ) ) |
| 11 | 6 10 | bitri | ⊢ ( ∃* 𝑥 ∈ 𝐴 𝜑 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝜑 ∧ 𝜓 ) → 𝑥 = 𝑦 ) ) |