This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restricted "at most one" using implicit substitution. (Contributed by NM, 24-Oct-2006) (Revised by Thierry Arnoux, 11-Oct-2016) (Revised by Thierry Arnoux, 8-Mar-2017) (Revised by Thierry Arnoux, 8-Oct-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rmo4f.1 | |- F/_ x A |
|
| rmo4f.2 | |- F/_ y A |
||
| rmo4f.3 | |- F/ x ps |
||
| rmo4f.4 | |- ( x = y -> ( ph <-> ps ) ) |
||
| Assertion | rmo4f | |- ( E* x e. A ph <-> A. x e. A A. y e. A ( ( ph /\ ps ) -> x = y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rmo4f.1 | |- F/_ x A |
|
| 2 | rmo4f.2 | |- F/_ y A |
|
| 3 | rmo4f.3 | |- F/ x ps |
|
| 4 | rmo4f.4 | |- ( x = y -> ( ph <-> ps ) ) |
|
| 5 | nfv | |- F/ y ph |
|
| 6 | 1 2 5 | rmo3f | |- ( E* x e. A ph <-> A. x e. A A. y e. A ( ( ph /\ [ y / x ] ph ) -> x = y ) ) |
| 7 | 3 4 | sbiev | |- ( [ y / x ] ph <-> ps ) |
| 8 | 7 | anbi2i | |- ( ( ph /\ [ y / x ] ph ) <-> ( ph /\ ps ) ) |
| 9 | 8 | imbi1i | |- ( ( ( ph /\ [ y / x ] ph ) -> x = y ) <-> ( ( ph /\ ps ) -> x = y ) ) |
| 10 | 9 | 2ralbii | |- ( A. x e. A A. y e. A ( ( ph /\ [ y / x ] ph ) -> x = y ) <-> A. x e. A A. y e. A ( ( ph /\ ps ) -> x = y ) ) |
| 11 | 6 10 | bitri | |- ( E* x e. A ph <-> A. x e. A A. y e. A ( ( ph /\ ps ) -> x = y ) ) |