This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the ring module extended. (Contributed by AV, 2-Dec-2018) (Revised by Thierry Arnoux, 16-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rlmval2 | ⊢ ( 𝑊 ∈ 𝑋 → ( ringLMod ‘ 𝑊 ) = ( ( ( 𝑊 sSet 〈 ( Scalar ‘ ndx ) , 𝑊 〉 ) sSet 〈 ( ·𝑠 ‘ ndx ) , ( .r ‘ 𝑊 ) 〉 ) sSet 〈 ( ·𝑖 ‘ ndx ) , ( .r ‘ 𝑊 ) 〉 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rlmval | ⊢ ( ringLMod ‘ 𝑊 ) = ( ( subringAlg ‘ 𝑊 ) ‘ ( Base ‘ 𝑊 ) ) | |
| 2 | 1 | a1i | ⊢ ( 𝑊 ∈ 𝑋 → ( ringLMod ‘ 𝑊 ) = ( ( subringAlg ‘ 𝑊 ) ‘ ( Base ‘ 𝑊 ) ) ) |
| 3 | ssid | ⊢ ( Base ‘ 𝑊 ) ⊆ ( Base ‘ 𝑊 ) | |
| 4 | sraval | ⊢ ( ( 𝑊 ∈ 𝑋 ∧ ( Base ‘ 𝑊 ) ⊆ ( Base ‘ 𝑊 ) ) → ( ( subringAlg ‘ 𝑊 ) ‘ ( Base ‘ 𝑊 ) ) = ( ( ( 𝑊 sSet 〈 ( Scalar ‘ ndx ) , ( 𝑊 ↾s ( Base ‘ 𝑊 ) ) 〉 ) sSet 〈 ( ·𝑠 ‘ ndx ) , ( .r ‘ 𝑊 ) 〉 ) sSet 〈 ( ·𝑖 ‘ ndx ) , ( .r ‘ 𝑊 ) 〉 ) ) | |
| 5 | 3 4 | mpan2 | ⊢ ( 𝑊 ∈ 𝑋 → ( ( subringAlg ‘ 𝑊 ) ‘ ( Base ‘ 𝑊 ) ) = ( ( ( 𝑊 sSet 〈 ( Scalar ‘ ndx ) , ( 𝑊 ↾s ( Base ‘ 𝑊 ) ) 〉 ) sSet 〈 ( ·𝑠 ‘ ndx ) , ( .r ‘ 𝑊 ) 〉 ) sSet 〈 ( ·𝑖 ‘ ndx ) , ( .r ‘ 𝑊 ) 〉 ) ) |
| 6 | eqid | ⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) | |
| 7 | 6 | ressid | ⊢ ( 𝑊 ∈ 𝑋 → ( 𝑊 ↾s ( Base ‘ 𝑊 ) ) = 𝑊 ) |
| 8 | 7 | opeq2d | ⊢ ( 𝑊 ∈ 𝑋 → 〈 ( Scalar ‘ ndx ) , ( 𝑊 ↾s ( Base ‘ 𝑊 ) ) 〉 = 〈 ( Scalar ‘ ndx ) , 𝑊 〉 ) |
| 9 | 8 | oveq2d | ⊢ ( 𝑊 ∈ 𝑋 → ( 𝑊 sSet 〈 ( Scalar ‘ ndx ) , ( 𝑊 ↾s ( Base ‘ 𝑊 ) ) 〉 ) = ( 𝑊 sSet 〈 ( Scalar ‘ ndx ) , 𝑊 〉 ) ) |
| 10 | 9 | oveq1d | ⊢ ( 𝑊 ∈ 𝑋 → ( ( 𝑊 sSet 〈 ( Scalar ‘ ndx ) , ( 𝑊 ↾s ( Base ‘ 𝑊 ) ) 〉 ) sSet 〈 ( ·𝑠 ‘ ndx ) , ( .r ‘ 𝑊 ) 〉 ) = ( ( 𝑊 sSet 〈 ( Scalar ‘ ndx ) , 𝑊 〉 ) sSet 〈 ( ·𝑠 ‘ ndx ) , ( .r ‘ 𝑊 ) 〉 ) ) |
| 11 | 10 | oveq1d | ⊢ ( 𝑊 ∈ 𝑋 → ( ( ( 𝑊 sSet 〈 ( Scalar ‘ ndx ) , ( 𝑊 ↾s ( Base ‘ 𝑊 ) ) 〉 ) sSet 〈 ( ·𝑠 ‘ ndx ) , ( .r ‘ 𝑊 ) 〉 ) sSet 〈 ( ·𝑖 ‘ ndx ) , ( .r ‘ 𝑊 ) 〉 ) = ( ( ( 𝑊 sSet 〈 ( Scalar ‘ ndx ) , 𝑊 〉 ) sSet 〈 ( ·𝑠 ‘ ndx ) , ( .r ‘ 𝑊 ) 〉 ) sSet 〈 ( ·𝑖 ‘ ndx ) , ( .r ‘ 𝑊 ) 〉 ) ) |
| 12 | 2 5 11 | 3eqtrd | ⊢ ( 𝑊 ∈ 𝑋 → ( ringLMod ‘ 𝑊 ) = ( ( ( 𝑊 sSet 〈 ( Scalar ‘ ndx ) , 𝑊 〉 ) sSet 〈 ( ·𝑠 ‘ ndx ) , ( .r ‘ 𝑊 ) 〉 ) sSet 〈 ( ·𝑖 ‘ ndx ) , ( .r ‘ 𝑊 ) 〉 ) ) |