This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The norm function in the ring module. (Contributed by AV, 9-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rlmnm | ⊢ ( norm ‘ 𝑅 ) = ( norm ‘ ( ringLMod ‘ 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rlmbas | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ ( ringLMod ‘ 𝑅 ) ) | |
| 2 | id | ⊢ ( ( Base ‘ 𝑅 ) = ( Base ‘ ( ringLMod ‘ 𝑅 ) ) → ( Base ‘ 𝑅 ) = ( Base ‘ ( ringLMod ‘ 𝑅 ) ) ) | |
| 3 | rlmplusg | ⊢ ( +g ‘ 𝑅 ) = ( +g ‘ ( ringLMod ‘ 𝑅 ) ) | |
| 4 | 3 | a1i | ⊢ ( ( Base ‘ 𝑅 ) = ( Base ‘ ( ringLMod ‘ 𝑅 ) ) → ( +g ‘ 𝑅 ) = ( +g ‘ ( ringLMod ‘ 𝑅 ) ) ) |
| 5 | rlmds | ⊢ ( dist ‘ 𝑅 ) = ( dist ‘ ( ringLMod ‘ 𝑅 ) ) | |
| 6 | 5 | a1i | ⊢ ( ( Base ‘ 𝑅 ) = ( Base ‘ ( ringLMod ‘ 𝑅 ) ) → ( dist ‘ 𝑅 ) = ( dist ‘ ( ringLMod ‘ 𝑅 ) ) ) |
| 7 | 2 4 6 | nmpropd | ⊢ ( ( Base ‘ 𝑅 ) = ( Base ‘ ( ringLMod ‘ 𝑅 ) ) → ( norm ‘ 𝑅 ) = ( norm ‘ ( ringLMod ‘ 𝑅 ) ) ) |
| 8 | 1 7 | ax-mp | ⊢ ( norm ‘ 𝑅 ) = ( norm ‘ ( ringLMod ‘ 𝑅 ) ) |