This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The norm function in the ring module. (Contributed by AV, 9-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rlmnm | |- ( norm ` R ) = ( norm ` ( ringLMod ` R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rlmbas | |- ( Base ` R ) = ( Base ` ( ringLMod ` R ) ) |
|
| 2 | id | |- ( ( Base ` R ) = ( Base ` ( ringLMod ` R ) ) -> ( Base ` R ) = ( Base ` ( ringLMod ` R ) ) ) |
|
| 3 | rlmplusg | |- ( +g ` R ) = ( +g ` ( ringLMod ` R ) ) |
|
| 4 | 3 | a1i | |- ( ( Base ` R ) = ( Base ` ( ringLMod ` R ) ) -> ( +g ` R ) = ( +g ` ( ringLMod ` R ) ) ) |
| 5 | rlmds | |- ( dist ` R ) = ( dist ` ( ringLMod ` R ) ) |
|
| 6 | 5 | a1i | |- ( ( Base ` R ) = ( Base ` ( ringLMod ` R ) ) -> ( dist ` R ) = ( dist ` ( ringLMod ` R ) ) ) |
| 7 | 2 4 6 | nmpropd | |- ( ( Base ` R ) = ( Base ` ( ringLMod ` R ) ) -> ( norm ` R ) = ( norm ` ( ringLMod ` R ) ) ) |
| 8 | 1 7 | ax-mp | |- ( norm ` R ) = ( norm ` ( ringLMod ` R ) ) |