This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Use strictly less-than in place of less equal in the real limit predicate. (Contributed by Mario Carneiro, 18-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rlim2.1 | ⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝐴 𝐵 ∈ ℂ ) | |
| rlim2.2 | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) | ||
| rlim2.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | ||
| Assertion | rlim2lt | ⊢ ( 𝜑 → ( ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝐶 ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 ( 𝑦 < 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rlim2.1 | ⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝐴 𝐵 ∈ ℂ ) | |
| 2 | rlim2.2 | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) | |
| 3 | rlim2.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | |
| 4 | 1 2 3 | rlim2 | ⊢ ( 𝜑 → ( ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝐶 ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) ) ) |
| 5 | simplr | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 ∈ 𝐴 ) → 𝑦 ∈ ℝ ) | |
| 6 | simpl | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑦 ∈ ℝ ) → 𝐴 ⊆ ℝ ) | |
| 7 | 6 | sselda | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 ∈ 𝐴 ) → 𝑧 ∈ ℝ ) |
| 8 | ltle | ⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) → ( 𝑦 < 𝑧 → 𝑦 ≤ 𝑧 ) ) | |
| 9 | 5 7 8 | syl2anc | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 ∈ 𝐴 ) → ( 𝑦 < 𝑧 → 𝑦 ≤ 𝑧 ) ) |
| 10 | 9 | imim1d | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 ∈ 𝐴 ) → ( ( 𝑦 ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) → ( 𝑦 < 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) ) ) |
| 11 | 10 | ralimdva | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑦 ∈ ℝ ) → ( ∀ 𝑧 ∈ 𝐴 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) → ∀ 𝑧 ∈ 𝐴 ( 𝑦 < 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) ) ) |
| 12 | 2 11 | sylan | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( ∀ 𝑧 ∈ 𝐴 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) → ∀ 𝑧 ∈ 𝐴 ( 𝑦 < 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) ) ) |
| 13 | 12 | reximdva | ⊢ ( 𝜑 → ( ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 ( 𝑦 < 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) ) ) |
| 14 | 13 | ralimdv | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) → ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 ( 𝑦 < 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) ) ) |
| 15 | 4 14 | sylbid | ⊢ ( 𝜑 → ( ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝐶 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 ( 𝑦 < 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) ) ) |
| 16 | peano2re | ⊢ ( 𝑦 ∈ ℝ → ( 𝑦 + 1 ) ∈ ℝ ) | |
| 17 | 16 | adantl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( 𝑦 + 1 ) ∈ ℝ ) |
| 18 | ltp1 | ⊢ ( 𝑦 ∈ ℝ → 𝑦 < ( 𝑦 + 1 ) ) | |
| 19 | 18 | ad2antlr | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 ∈ 𝐴 ) → 𝑦 < ( 𝑦 + 1 ) ) |
| 20 | 16 | ad2antlr | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 ∈ 𝐴 ) → ( 𝑦 + 1 ) ∈ ℝ ) |
| 21 | ltletr | ⊢ ( ( 𝑦 ∈ ℝ ∧ ( 𝑦 + 1 ) ∈ ℝ ∧ 𝑧 ∈ ℝ ) → ( ( 𝑦 < ( 𝑦 + 1 ) ∧ ( 𝑦 + 1 ) ≤ 𝑧 ) → 𝑦 < 𝑧 ) ) | |
| 22 | 5 20 7 21 | syl3anc | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 ∈ 𝐴 ) → ( ( 𝑦 < ( 𝑦 + 1 ) ∧ ( 𝑦 + 1 ) ≤ 𝑧 ) → 𝑦 < 𝑧 ) ) |
| 23 | 19 22 | mpand | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 ∈ 𝐴 ) → ( ( 𝑦 + 1 ) ≤ 𝑧 → 𝑦 < 𝑧 ) ) |
| 24 | 23 | imim1d | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 ∈ 𝐴 ) → ( ( 𝑦 < 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) → ( ( 𝑦 + 1 ) ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) ) ) |
| 25 | 24 | ralimdva | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑦 ∈ ℝ ) → ( ∀ 𝑧 ∈ 𝐴 ( 𝑦 < 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) → ∀ 𝑧 ∈ 𝐴 ( ( 𝑦 + 1 ) ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) ) ) |
| 26 | 2 25 | sylan | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( ∀ 𝑧 ∈ 𝐴 ( 𝑦 < 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) → ∀ 𝑧 ∈ 𝐴 ( ( 𝑦 + 1 ) ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) ) ) |
| 27 | breq1 | ⊢ ( 𝑤 = ( 𝑦 + 1 ) → ( 𝑤 ≤ 𝑧 ↔ ( 𝑦 + 1 ) ≤ 𝑧 ) ) | |
| 28 | 27 | rspceaimv | ⊢ ( ( ( 𝑦 + 1 ) ∈ ℝ ∧ ∀ 𝑧 ∈ 𝐴 ( ( 𝑦 + 1 ) ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) ) → ∃ 𝑤 ∈ ℝ ∀ 𝑧 ∈ 𝐴 ( 𝑤 ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) ) |
| 29 | 17 26 28 | syl6an | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( ∀ 𝑧 ∈ 𝐴 ( 𝑦 < 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) → ∃ 𝑤 ∈ ℝ ∀ 𝑧 ∈ 𝐴 ( 𝑤 ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) ) ) |
| 30 | 29 | rexlimdva | ⊢ ( 𝜑 → ( ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 ( 𝑦 < 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) → ∃ 𝑤 ∈ ℝ ∀ 𝑧 ∈ 𝐴 ( 𝑤 ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) ) ) |
| 31 | 30 | ralimdv | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 ( 𝑦 < 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) → ∀ 𝑥 ∈ ℝ+ ∃ 𝑤 ∈ ℝ ∀ 𝑧 ∈ 𝐴 ( 𝑤 ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) ) ) |
| 32 | 1 2 3 | rlim2 | ⊢ ( 𝜑 → ( ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝐶 ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑤 ∈ ℝ ∀ 𝑧 ∈ 𝐴 ( 𝑤 ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) ) ) |
| 33 | 31 32 | sylibrd | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 ( 𝑦 < 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) → ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝐶 ) ) |
| 34 | 15 33 | impbid | ⊢ ( 𝜑 → ( ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝐶 ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 ( 𝑦 < 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) ) ) |