This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the rising factorial function. (Contributed by Scott Fenton, 5-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | risefacval | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 RiseFac 𝑁 ) = ∏ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( 𝐴 + 𝑘 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 + 𝑘 ) = ( 𝐴 + 𝑘 ) ) | |
| 2 | 1 | prodeq2sdv | ⊢ ( 𝑥 = 𝐴 → ∏ 𝑘 ∈ ( 0 ... ( 𝑛 − 1 ) ) ( 𝑥 + 𝑘 ) = ∏ 𝑘 ∈ ( 0 ... ( 𝑛 − 1 ) ) ( 𝐴 + 𝑘 ) ) |
| 3 | oveq1 | ⊢ ( 𝑛 = 𝑁 → ( 𝑛 − 1 ) = ( 𝑁 − 1 ) ) | |
| 4 | 3 | oveq2d | ⊢ ( 𝑛 = 𝑁 → ( 0 ... ( 𝑛 − 1 ) ) = ( 0 ... ( 𝑁 − 1 ) ) ) |
| 5 | 4 | prodeq1d | ⊢ ( 𝑛 = 𝑁 → ∏ 𝑘 ∈ ( 0 ... ( 𝑛 − 1 ) ) ( 𝐴 + 𝑘 ) = ∏ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( 𝐴 + 𝑘 ) ) |
| 6 | df-risefac | ⊢ RiseFac = ( 𝑥 ∈ ℂ , 𝑛 ∈ ℕ0 ↦ ∏ 𝑘 ∈ ( 0 ... ( 𝑛 − 1 ) ) ( 𝑥 + 𝑘 ) ) | |
| 7 | prodex | ⊢ ∏ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( 𝐴 + 𝑘 ) ∈ V | |
| 8 | 2 5 6 7 | ovmpo | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 RiseFac 𝑁 ) = ∏ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( 𝐴 + 𝑘 ) ) |