This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A method for computing restricted iota. (Contributed by NM, 16-Apr-2013) (Revised by Mario Carneiro, 15-Oct-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | riota5f.1 | ⊢ ( 𝜑 → Ⅎ 𝑥 𝐵 ) | |
| riota5f.2 | ⊢ ( 𝜑 → 𝐵 ∈ 𝐴 ) | ||
| riota5f.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝜓 ↔ 𝑥 = 𝐵 ) ) | ||
| Assertion | riota5f | ⊢ ( 𝜑 → ( ℩ 𝑥 ∈ 𝐴 𝜓 ) = 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | riota5f.1 | ⊢ ( 𝜑 → Ⅎ 𝑥 𝐵 ) | |
| 2 | riota5f.2 | ⊢ ( 𝜑 → 𝐵 ∈ 𝐴 ) | |
| 3 | riota5f.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝜓 ↔ 𝑥 = 𝐵 ) ) | |
| 4 | 3 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ( 𝜓 ↔ 𝑥 = 𝐵 ) ) |
| 5 | trud | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜓 ↔ 𝑥 = 𝑦 ) ) ) → ⊤ ) | |
| 6 | reu6i | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜓 ↔ 𝑥 = 𝑦 ) ) → ∃! 𝑥 ∈ 𝐴 𝜓 ) | |
| 7 | 6 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜓 ↔ 𝑥 = 𝑦 ) ) ) → ∃! 𝑥 ∈ 𝐴 𝜓 ) |
| 8 | nfv | ⊢ Ⅎ 𝑥 𝜑 | |
| 9 | nfv | ⊢ Ⅎ 𝑥 𝑦 ∈ 𝐴 | |
| 10 | nfra1 | ⊢ Ⅎ 𝑥 ∀ 𝑥 ∈ 𝐴 ( 𝜓 ↔ 𝑥 = 𝑦 ) | |
| 11 | 9 10 | nfan | ⊢ Ⅎ 𝑥 ( 𝑦 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜓 ↔ 𝑥 = 𝑦 ) ) |
| 12 | 8 11 | nfan | ⊢ Ⅎ 𝑥 ( 𝜑 ∧ ( 𝑦 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜓 ↔ 𝑥 = 𝑦 ) ) ) |
| 13 | nfcvd | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜓 ↔ 𝑥 = 𝑦 ) ) ) → Ⅎ 𝑥 𝑦 ) | |
| 14 | nfvd | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜓 ↔ 𝑥 = 𝑦 ) ) ) → Ⅎ 𝑥 ⊤ ) | |
| 15 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜓 ↔ 𝑥 = 𝑦 ) ) ) → 𝑦 ∈ 𝐴 ) | |
| 16 | simpr | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜓 ↔ 𝑥 = 𝑦 ) ) ) ∧ 𝑥 = 𝑦 ) → 𝑥 = 𝑦 ) | |
| 17 | simplrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜓 ↔ 𝑥 = 𝑦 ) ) ) ∧ 𝑥 = 𝑦 ) → ∀ 𝑥 ∈ 𝐴 ( 𝜓 ↔ 𝑥 = 𝑦 ) ) | |
| 18 | simplrl | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜓 ↔ 𝑥 = 𝑦 ) ) ) ∧ 𝑥 = 𝑦 ) → 𝑦 ∈ 𝐴 ) | |
| 19 | 16 18 | eqeltrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜓 ↔ 𝑥 = 𝑦 ) ) ) ∧ 𝑥 = 𝑦 ) → 𝑥 ∈ 𝐴 ) |
| 20 | rsp | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜓 ↔ 𝑥 = 𝑦 ) → ( 𝑥 ∈ 𝐴 → ( 𝜓 ↔ 𝑥 = 𝑦 ) ) ) | |
| 21 | 17 19 20 | sylc | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜓 ↔ 𝑥 = 𝑦 ) ) ) ∧ 𝑥 = 𝑦 ) → ( 𝜓 ↔ 𝑥 = 𝑦 ) ) |
| 22 | 16 21 | mpbird | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜓 ↔ 𝑥 = 𝑦 ) ) ) ∧ 𝑥 = 𝑦 ) → 𝜓 ) |
| 23 | trud | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜓 ↔ 𝑥 = 𝑦 ) ) ) ∧ 𝑥 = 𝑦 ) → ⊤ ) | |
| 24 | 22 23 | 2thd | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜓 ↔ 𝑥 = 𝑦 ) ) ) ∧ 𝑥 = 𝑦 ) → ( 𝜓 ↔ ⊤ ) ) |
| 25 | 12 13 14 15 24 | riota2df | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜓 ↔ 𝑥 = 𝑦 ) ) ) ∧ ∃! 𝑥 ∈ 𝐴 𝜓 ) → ( ⊤ ↔ ( ℩ 𝑥 ∈ 𝐴 𝜓 ) = 𝑦 ) ) |
| 26 | 7 25 | mpdan | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜓 ↔ 𝑥 = 𝑦 ) ) ) → ( ⊤ ↔ ( ℩ 𝑥 ∈ 𝐴 𝜓 ) = 𝑦 ) ) |
| 27 | 5 26 | mpbid | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜓 ↔ 𝑥 = 𝑦 ) ) ) → ( ℩ 𝑥 ∈ 𝐴 𝜓 ) = 𝑦 ) |
| 28 | 27 | expr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( ∀ 𝑥 ∈ 𝐴 ( 𝜓 ↔ 𝑥 = 𝑦 ) → ( ℩ 𝑥 ∈ 𝐴 𝜓 ) = 𝑦 ) ) |
| 29 | 28 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝐴 ( ∀ 𝑥 ∈ 𝐴 ( 𝜓 ↔ 𝑥 = 𝑦 ) → ( ℩ 𝑥 ∈ 𝐴 𝜓 ) = 𝑦 ) ) |
| 30 | rspsbc | ⊢ ( 𝐵 ∈ 𝐴 → ( ∀ 𝑦 ∈ 𝐴 ( ∀ 𝑥 ∈ 𝐴 ( 𝜓 ↔ 𝑥 = 𝑦 ) → ( ℩ 𝑥 ∈ 𝐴 𝜓 ) = 𝑦 ) → [ 𝐵 / 𝑦 ] ( ∀ 𝑥 ∈ 𝐴 ( 𝜓 ↔ 𝑥 = 𝑦 ) → ( ℩ 𝑥 ∈ 𝐴 𝜓 ) = 𝑦 ) ) ) | |
| 31 | 2 29 30 | sylc | ⊢ ( 𝜑 → [ 𝐵 / 𝑦 ] ( ∀ 𝑥 ∈ 𝐴 ( 𝜓 ↔ 𝑥 = 𝑦 ) → ( ℩ 𝑥 ∈ 𝐴 𝜓 ) = 𝑦 ) ) |
| 32 | nfcvd | ⊢ ( 𝜑 → Ⅎ 𝑥 𝑦 ) | |
| 33 | 32 1 | nfeqd | ⊢ ( 𝜑 → Ⅎ 𝑥 𝑦 = 𝐵 ) |
| 34 | 8 33 | nfan1 | ⊢ Ⅎ 𝑥 ( 𝜑 ∧ 𝑦 = 𝐵 ) |
| 35 | simpr | ⊢ ( ( 𝜑 ∧ 𝑦 = 𝐵 ) → 𝑦 = 𝐵 ) | |
| 36 | 35 | eqeq2d | ⊢ ( ( 𝜑 ∧ 𝑦 = 𝐵 ) → ( 𝑥 = 𝑦 ↔ 𝑥 = 𝐵 ) ) |
| 37 | 36 | bibi2d | ⊢ ( ( 𝜑 ∧ 𝑦 = 𝐵 ) → ( ( 𝜓 ↔ 𝑥 = 𝑦 ) ↔ ( 𝜓 ↔ 𝑥 = 𝐵 ) ) ) |
| 38 | 34 37 | ralbid | ⊢ ( ( 𝜑 ∧ 𝑦 = 𝐵 ) → ( ∀ 𝑥 ∈ 𝐴 ( 𝜓 ↔ 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝜓 ↔ 𝑥 = 𝐵 ) ) ) |
| 39 | 35 | eqeq2d | ⊢ ( ( 𝜑 ∧ 𝑦 = 𝐵 ) → ( ( ℩ 𝑥 ∈ 𝐴 𝜓 ) = 𝑦 ↔ ( ℩ 𝑥 ∈ 𝐴 𝜓 ) = 𝐵 ) ) |
| 40 | 38 39 | imbi12d | ⊢ ( ( 𝜑 ∧ 𝑦 = 𝐵 ) → ( ( ∀ 𝑥 ∈ 𝐴 ( 𝜓 ↔ 𝑥 = 𝑦 ) → ( ℩ 𝑥 ∈ 𝐴 𝜓 ) = 𝑦 ) ↔ ( ∀ 𝑥 ∈ 𝐴 ( 𝜓 ↔ 𝑥 = 𝐵 ) → ( ℩ 𝑥 ∈ 𝐴 𝜓 ) = 𝐵 ) ) ) |
| 41 | 2 40 | sbcied | ⊢ ( 𝜑 → ( [ 𝐵 / 𝑦 ] ( ∀ 𝑥 ∈ 𝐴 ( 𝜓 ↔ 𝑥 = 𝑦 ) → ( ℩ 𝑥 ∈ 𝐴 𝜓 ) = 𝑦 ) ↔ ( ∀ 𝑥 ∈ 𝐴 ( 𝜓 ↔ 𝑥 = 𝐵 ) → ( ℩ 𝑥 ∈ 𝐴 𝜓 ) = 𝐵 ) ) ) |
| 42 | 31 41 | mpbid | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐴 ( 𝜓 ↔ 𝑥 = 𝐵 ) → ( ℩ 𝑥 ∈ 𝐴 𝜓 ) = 𝐵 ) ) |
| 43 | 4 42 | mpd | ⊢ ( 𝜑 → ( ℩ 𝑥 ∈ 𝐴 𝜓 ) = 𝐵 ) |