This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A method for computing restricted iota. (Contributed by NM, 16-Apr-2013) (Revised by Mario Carneiro, 15-Oct-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | riota5f.1 | |- ( ph -> F/_ x B ) |
|
| riota5f.2 | |- ( ph -> B e. A ) |
||
| riota5f.3 | |- ( ( ph /\ x e. A ) -> ( ps <-> x = B ) ) |
||
| Assertion | riota5f | |- ( ph -> ( iota_ x e. A ps ) = B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | riota5f.1 | |- ( ph -> F/_ x B ) |
|
| 2 | riota5f.2 | |- ( ph -> B e. A ) |
|
| 3 | riota5f.3 | |- ( ( ph /\ x e. A ) -> ( ps <-> x = B ) ) |
|
| 4 | 3 | ralrimiva | |- ( ph -> A. x e. A ( ps <-> x = B ) ) |
| 5 | trud | |- ( ( ph /\ ( y e. A /\ A. x e. A ( ps <-> x = y ) ) ) -> T. ) |
|
| 6 | reu6i | |- ( ( y e. A /\ A. x e. A ( ps <-> x = y ) ) -> E! x e. A ps ) |
|
| 7 | 6 | adantl | |- ( ( ph /\ ( y e. A /\ A. x e. A ( ps <-> x = y ) ) ) -> E! x e. A ps ) |
| 8 | nfv | |- F/ x ph |
|
| 9 | nfv | |- F/ x y e. A |
|
| 10 | nfra1 | |- F/ x A. x e. A ( ps <-> x = y ) |
|
| 11 | 9 10 | nfan | |- F/ x ( y e. A /\ A. x e. A ( ps <-> x = y ) ) |
| 12 | 8 11 | nfan | |- F/ x ( ph /\ ( y e. A /\ A. x e. A ( ps <-> x = y ) ) ) |
| 13 | nfcvd | |- ( ( ph /\ ( y e. A /\ A. x e. A ( ps <-> x = y ) ) ) -> F/_ x y ) |
|
| 14 | nfvd | |- ( ( ph /\ ( y e. A /\ A. x e. A ( ps <-> x = y ) ) ) -> F/ x T. ) |
|
| 15 | simprl | |- ( ( ph /\ ( y e. A /\ A. x e. A ( ps <-> x = y ) ) ) -> y e. A ) |
|
| 16 | simpr | |- ( ( ( ph /\ ( y e. A /\ A. x e. A ( ps <-> x = y ) ) ) /\ x = y ) -> x = y ) |
|
| 17 | simplrr | |- ( ( ( ph /\ ( y e. A /\ A. x e. A ( ps <-> x = y ) ) ) /\ x = y ) -> A. x e. A ( ps <-> x = y ) ) |
|
| 18 | simplrl | |- ( ( ( ph /\ ( y e. A /\ A. x e. A ( ps <-> x = y ) ) ) /\ x = y ) -> y e. A ) |
|
| 19 | 16 18 | eqeltrd | |- ( ( ( ph /\ ( y e. A /\ A. x e. A ( ps <-> x = y ) ) ) /\ x = y ) -> x e. A ) |
| 20 | rsp | |- ( A. x e. A ( ps <-> x = y ) -> ( x e. A -> ( ps <-> x = y ) ) ) |
|
| 21 | 17 19 20 | sylc | |- ( ( ( ph /\ ( y e. A /\ A. x e. A ( ps <-> x = y ) ) ) /\ x = y ) -> ( ps <-> x = y ) ) |
| 22 | 16 21 | mpbird | |- ( ( ( ph /\ ( y e. A /\ A. x e. A ( ps <-> x = y ) ) ) /\ x = y ) -> ps ) |
| 23 | trud | |- ( ( ( ph /\ ( y e. A /\ A. x e. A ( ps <-> x = y ) ) ) /\ x = y ) -> T. ) |
|
| 24 | 22 23 | 2thd | |- ( ( ( ph /\ ( y e. A /\ A. x e. A ( ps <-> x = y ) ) ) /\ x = y ) -> ( ps <-> T. ) ) |
| 25 | 12 13 14 15 24 | riota2df | |- ( ( ( ph /\ ( y e. A /\ A. x e. A ( ps <-> x = y ) ) ) /\ E! x e. A ps ) -> ( T. <-> ( iota_ x e. A ps ) = y ) ) |
| 26 | 7 25 | mpdan | |- ( ( ph /\ ( y e. A /\ A. x e. A ( ps <-> x = y ) ) ) -> ( T. <-> ( iota_ x e. A ps ) = y ) ) |
| 27 | 5 26 | mpbid | |- ( ( ph /\ ( y e. A /\ A. x e. A ( ps <-> x = y ) ) ) -> ( iota_ x e. A ps ) = y ) |
| 28 | 27 | expr | |- ( ( ph /\ y e. A ) -> ( A. x e. A ( ps <-> x = y ) -> ( iota_ x e. A ps ) = y ) ) |
| 29 | 28 | ralrimiva | |- ( ph -> A. y e. A ( A. x e. A ( ps <-> x = y ) -> ( iota_ x e. A ps ) = y ) ) |
| 30 | rspsbc | |- ( B e. A -> ( A. y e. A ( A. x e. A ( ps <-> x = y ) -> ( iota_ x e. A ps ) = y ) -> [. B / y ]. ( A. x e. A ( ps <-> x = y ) -> ( iota_ x e. A ps ) = y ) ) ) |
|
| 31 | 2 29 30 | sylc | |- ( ph -> [. B / y ]. ( A. x e. A ( ps <-> x = y ) -> ( iota_ x e. A ps ) = y ) ) |
| 32 | nfcvd | |- ( ph -> F/_ x y ) |
|
| 33 | 32 1 | nfeqd | |- ( ph -> F/ x y = B ) |
| 34 | 8 33 | nfan1 | |- F/ x ( ph /\ y = B ) |
| 35 | simpr | |- ( ( ph /\ y = B ) -> y = B ) |
|
| 36 | 35 | eqeq2d | |- ( ( ph /\ y = B ) -> ( x = y <-> x = B ) ) |
| 37 | 36 | bibi2d | |- ( ( ph /\ y = B ) -> ( ( ps <-> x = y ) <-> ( ps <-> x = B ) ) ) |
| 38 | 34 37 | ralbid | |- ( ( ph /\ y = B ) -> ( A. x e. A ( ps <-> x = y ) <-> A. x e. A ( ps <-> x = B ) ) ) |
| 39 | 35 | eqeq2d | |- ( ( ph /\ y = B ) -> ( ( iota_ x e. A ps ) = y <-> ( iota_ x e. A ps ) = B ) ) |
| 40 | 38 39 | imbi12d | |- ( ( ph /\ y = B ) -> ( ( A. x e. A ( ps <-> x = y ) -> ( iota_ x e. A ps ) = y ) <-> ( A. x e. A ( ps <-> x = B ) -> ( iota_ x e. A ps ) = B ) ) ) |
| 41 | 2 40 | sbcied | |- ( ph -> ( [. B / y ]. ( A. x e. A ( ps <-> x = y ) -> ( iota_ x e. A ps ) = y ) <-> ( A. x e. A ( ps <-> x = B ) -> ( iota_ x e. A ps ) = B ) ) ) |
| 42 | 31 41 | mpbid | |- ( ph -> ( A. x e. A ( ps <-> x = B ) -> ( iota_ x e. A ps ) = B ) ) |
| 43 | 4 42 | mpd | |- ( ph -> ( iota_ x e. A ps ) = B ) |