This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A deduction version of riota2f . (Contributed by NM, 17-Feb-2013) (Revised by Mario Carneiro, 15-Oct-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | riota2df.1 | ⊢ Ⅎ 𝑥 𝜑 | |
| riota2df.2 | ⊢ ( 𝜑 → Ⅎ 𝑥 𝐵 ) | ||
| riota2df.3 | ⊢ ( 𝜑 → Ⅎ 𝑥 𝜒 ) | ||
| riota2df.4 | ⊢ ( 𝜑 → 𝐵 ∈ 𝐴 ) | ||
| riota2df.5 | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐵 ) → ( 𝜓 ↔ 𝜒 ) ) | ||
| Assertion | riota2df | ⊢ ( ( 𝜑 ∧ ∃! 𝑥 ∈ 𝐴 𝜓 ) → ( 𝜒 ↔ ( ℩ 𝑥 ∈ 𝐴 𝜓 ) = 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | riota2df.1 | ⊢ Ⅎ 𝑥 𝜑 | |
| 2 | riota2df.2 | ⊢ ( 𝜑 → Ⅎ 𝑥 𝐵 ) | |
| 3 | riota2df.3 | ⊢ ( 𝜑 → Ⅎ 𝑥 𝜒 ) | |
| 4 | riota2df.4 | ⊢ ( 𝜑 → 𝐵 ∈ 𝐴 ) | |
| 5 | riota2df.5 | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐵 ) → ( 𝜓 ↔ 𝜒 ) ) | |
| 6 | 4 | adantr | ⊢ ( ( 𝜑 ∧ ∃! 𝑥 ∈ 𝐴 𝜓 ) → 𝐵 ∈ 𝐴 ) |
| 7 | simpr | ⊢ ( ( 𝜑 ∧ ∃! 𝑥 ∈ 𝐴 𝜓 ) → ∃! 𝑥 ∈ 𝐴 𝜓 ) | |
| 8 | df-reu | ⊢ ( ∃! 𝑥 ∈ 𝐴 𝜓 ↔ ∃! 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) | |
| 9 | 7 8 | sylib | ⊢ ( ( 𝜑 ∧ ∃! 𝑥 ∈ 𝐴 𝜓 ) → ∃! 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) |
| 10 | simpr | ⊢ ( ( ( 𝜑 ∧ ∃! 𝑥 ∈ 𝐴 𝜓 ) ∧ 𝑥 = 𝐵 ) → 𝑥 = 𝐵 ) | |
| 11 | 6 | adantr | ⊢ ( ( ( 𝜑 ∧ ∃! 𝑥 ∈ 𝐴 𝜓 ) ∧ 𝑥 = 𝐵 ) → 𝐵 ∈ 𝐴 ) |
| 12 | 10 11 | eqeltrd | ⊢ ( ( ( 𝜑 ∧ ∃! 𝑥 ∈ 𝐴 𝜓 ) ∧ 𝑥 = 𝐵 ) → 𝑥 ∈ 𝐴 ) |
| 13 | 12 | biantrurd | ⊢ ( ( ( 𝜑 ∧ ∃! 𝑥 ∈ 𝐴 𝜓 ) ∧ 𝑥 = 𝐵 ) → ( 𝜓 ↔ ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) ) |
| 14 | 5 | adantlr | ⊢ ( ( ( 𝜑 ∧ ∃! 𝑥 ∈ 𝐴 𝜓 ) ∧ 𝑥 = 𝐵 ) → ( 𝜓 ↔ 𝜒 ) ) |
| 15 | 13 14 | bitr3d | ⊢ ( ( ( 𝜑 ∧ ∃! 𝑥 ∈ 𝐴 𝜓 ) ∧ 𝑥 = 𝐵 ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ↔ 𝜒 ) ) |
| 16 | nfreu1 | ⊢ Ⅎ 𝑥 ∃! 𝑥 ∈ 𝐴 𝜓 | |
| 17 | 1 16 | nfan | ⊢ Ⅎ 𝑥 ( 𝜑 ∧ ∃! 𝑥 ∈ 𝐴 𝜓 ) |
| 18 | 3 | adantr | ⊢ ( ( 𝜑 ∧ ∃! 𝑥 ∈ 𝐴 𝜓 ) → Ⅎ 𝑥 𝜒 ) |
| 19 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ∃! 𝑥 ∈ 𝐴 𝜓 ) → Ⅎ 𝑥 𝐵 ) |
| 20 | 6 9 15 17 18 19 | iota2df | ⊢ ( ( 𝜑 ∧ ∃! 𝑥 ∈ 𝐴 𝜓 ) → ( 𝜒 ↔ ( ℩ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) = 𝐵 ) ) |
| 21 | df-riota | ⊢ ( ℩ 𝑥 ∈ 𝐴 𝜓 ) = ( ℩ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) | |
| 22 | 21 | eqeq1i | ⊢ ( ( ℩ 𝑥 ∈ 𝐴 𝜓 ) = 𝐵 ↔ ( ℩ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) = 𝐵 ) |
| 23 | 20 22 | bitr4di | ⊢ ( ( 𝜑 ∧ ∃! 𝑥 ∈ 𝐴 𝜓 ) → ( 𝜒 ↔ ( ℩ 𝑥 ∈ 𝐴 𝜓 ) = 𝐵 ) ) |