This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A deduction version of riota2f . (Contributed by NM, 17-Feb-2013) (Revised by Mario Carneiro, 15-Oct-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | riota2df.1 | |- F/ x ph |
|
| riota2df.2 | |- ( ph -> F/_ x B ) |
||
| riota2df.3 | |- ( ph -> F/ x ch ) |
||
| riota2df.4 | |- ( ph -> B e. A ) |
||
| riota2df.5 | |- ( ( ph /\ x = B ) -> ( ps <-> ch ) ) |
||
| Assertion | riota2df | |- ( ( ph /\ E! x e. A ps ) -> ( ch <-> ( iota_ x e. A ps ) = B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | riota2df.1 | |- F/ x ph |
|
| 2 | riota2df.2 | |- ( ph -> F/_ x B ) |
|
| 3 | riota2df.3 | |- ( ph -> F/ x ch ) |
|
| 4 | riota2df.4 | |- ( ph -> B e. A ) |
|
| 5 | riota2df.5 | |- ( ( ph /\ x = B ) -> ( ps <-> ch ) ) |
|
| 6 | 4 | adantr | |- ( ( ph /\ E! x e. A ps ) -> B e. A ) |
| 7 | simpr | |- ( ( ph /\ E! x e. A ps ) -> E! x e. A ps ) |
|
| 8 | df-reu | |- ( E! x e. A ps <-> E! x ( x e. A /\ ps ) ) |
|
| 9 | 7 8 | sylib | |- ( ( ph /\ E! x e. A ps ) -> E! x ( x e. A /\ ps ) ) |
| 10 | simpr | |- ( ( ( ph /\ E! x e. A ps ) /\ x = B ) -> x = B ) |
|
| 11 | 6 | adantr | |- ( ( ( ph /\ E! x e. A ps ) /\ x = B ) -> B e. A ) |
| 12 | 10 11 | eqeltrd | |- ( ( ( ph /\ E! x e. A ps ) /\ x = B ) -> x e. A ) |
| 13 | 12 | biantrurd | |- ( ( ( ph /\ E! x e. A ps ) /\ x = B ) -> ( ps <-> ( x e. A /\ ps ) ) ) |
| 14 | 5 | adantlr | |- ( ( ( ph /\ E! x e. A ps ) /\ x = B ) -> ( ps <-> ch ) ) |
| 15 | 13 14 | bitr3d | |- ( ( ( ph /\ E! x e. A ps ) /\ x = B ) -> ( ( x e. A /\ ps ) <-> ch ) ) |
| 16 | nfreu1 | |- F/ x E! x e. A ps |
|
| 17 | 1 16 | nfan | |- F/ x ( ph /\ E! x e. A ps ) |
| 18 | 3 | adantr | |- ( ( ph /\ E! x e. A ps ) -> F/ x ch ) |
| 19 | 2 | adantr | |- ( ( ph /\ E! x e. A ps ) -> F/_ x B ) |
| 20 | 6 9 15 17 18 19 | iota2df | |- ( ( ph /\ E! x e. A ps ) -> ( ch <-> ( iota x ( x e. A /\ ps ) ) = B ) ) |
| 21 | df-riota | |- ( iota_ x e. A ps ) = ( iota x ( x e. A /\ ps ) ) |
|
| 22 | 21 | eqeq1i | |- ( ( iota_ x e. A ps ) = B <-> ( iota x ( x e. A /\ ps ) ) = B ) |
| 23 | 20 22 | bitr4di | |- ( ( ph /\ E! x e. A ps ) -> ( ch <-> ( iota_ x e. A ps ) = B ) ) |