This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a unitary ring, the ring unity is not a zero divisor. (Contributed by AV, 7-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ringunitnzdiv.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| ringunitnzdiv.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| ringunitnzdiv.t | ⊢ · = ( .r ‘ 𝑅 ) | ||
| ringunitnzdiv.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | ||
| ringunitnzdiv.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| ring1nzdiv.x | ⊢ 1 = ( 1r ‘ 𝑅 ) | ||
| Assertion | ring1nzdiv | ⊢ ( 𝜑 → ( ( 1 · 𝑌 ) = 0 ↔ 𝑌 = 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringunitnzdiv.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | ringunitnzdiv.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 3 | ringunitnzdiv.t | ⊢ · = ( .r ‘ 𝑅 ) | |
| 4 | ringunitnzdiv.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | |
| 5 | ringunitnzdiv.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 6 | ring1nzdiv.x | ⊢ 1 = ( 1r ‘ 𝑅 ) | |
| 7 | eqid | ⊢ ( Unit ‘ 𝑅 ) = ( Unit ‘ 𝑅 ) | |
| 8 | 7 6 | 1unit | ⊢ ( 𝑅 ∈ Ring → 1 ∈ ( Unit ‘ 𝑅 ) ) |
| 9 | 4 8 | syl | ⊢ ( 𝜑 → 1 ∈ ( Unit ‘ 𝑅 ) ) |
| 10 | 1 2 3 4 5 9 | ringunitnzdiv | ⊢ ( 𝜑 → ( ( 1 · 𝑌 ) = 0 ↔ 𝑌 = 0 ) ) |