This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a unital ring, a left invertible element is not a zero divisor. (Contributed by FL, 18-Apr-2010) (Revised by Jeff Madsen, 18-Apr-2010) (Revised by AV, 24-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ringinvnzdiv.b | |- B = ( Base ` R ) |
|
| ringinvnzdiv.t | |- .x. = ( .r ` R ) |
||
| ringinvnzdiv.u | |- .1. = ( 1r ` R ) |
||
| ringinvnzdiv.z | |- .0. = ( 0g ` R ) |
||
| ringinvnzdiv.r | |- ( ph -> R e. Ring ) |
||
| ringinvnzdiv.x | |- ( ph -> X e. B ) |
||
| ringinvnzdiv.a | |- ( ph -> E. a e. B ( a .x. X ) = .1. ) |
||
| ringinvnzdiv.y | |- ( ph -> Y e. B ) |
||
| Assertion | ringinvnzdiv | |- ( ph -> ( ( X .x. Y ) = .0. <-> Y = .0. ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringinvnzdiv.b | |- B = ( Base ` R ) |
|
| 2 | ringinvnzdiv.t | |- .x. = ( .r ` R ) |
|
| 3 | ringinvnzdiv.u | |- .1. = ( 1r ` R ) |
|
| 4 | ringinvnzdiv.z | |- .0. = ( 0g ` R ) |
|
| 5 | ringinvnzdiv.r | |- ( ph -> R e. Ring ) |
|
| 6 | ringinvnzdiv.x | |- ( ph -> X e. B ) |
|
| 7 | ringinvnzdiv.a | |- ( ph -> E. a e. B ( a .x. X ) = .1. ) |
|
| 8 | ringinvnzdiv.y | |- ( ph -> Y e. B ) |
|
| 9 | 1 2 3 | ringlidm | |- ( ( R e. Ring /\ Y e. B ) -> ( .1. .x. Y ) = Y ) |
| 10 | 5 8 9 | syl2anc | |- ( ph -> ( .1. .x. Y ) = Y ) |
| 11 | 10 | eqcomd | |- ( ph -> Y = ( .1. .x. Y ) ) |
| 12 | 11 | ad3antrrr | |- ( ( ( ( ph /\ a e. B ) /\ ( a .x. X ) = .1. ) /\ ( X .x. Y ) = .0. ) -> Y = ( .1. .x. Y ) ) |
| 13 | oveq1 | |- ( .1. = ( a .x. X ) -> ( .1. .x. Y ) = ( ( a .x. X ) .x. Y ) ) |
|
| 14 | 13 | eqcoms | |- ( ( a .x. X ) = .1. -> ( .1. .x. Y ) = ( ( a .x. X ) .x. Y ) ) |
| 15 | 14 | adantl | |- ( ( ( ph /\ a e. B ) /\ ( a .x. X ) = .1. ) -> ( .1. .x. Y ) = ( ( a .x. X ) .x. Y ) ) |
| 16 | 5 | adantr | |- ( ( ph /\ a e. B ) -> R e. Ring ) |
| 17 | simpr | |- ( ( ph /\ a e. B ) -> a e. B ) |
|
| 18 | 6 | adantr | |- ( ( ph /\ a e. B ) -> X e. B ) |
| 19 | 8 | adantr | |- ( ( ph /\ a e. B ) -> Y e. B ) |
| 20 | 17 18 19 | 3jca | |- ( ( ph /\ a e. B ) -> ( a e. B /\ X e. B /\ Y e. B ) ) |
| 21 | 16 20 | jca | |- ( ( ph /\ a e. B ) -> ( R e. Ring /\ ( a e. B /\ X e. B /\ Y e. B ) ) ) |
| 22 | 21 | adantr | |- ( ( ( ph /\ a e. B ) /\ ( a .x. X ) = .1. ) -> ( R e. Ring /\ ( a e. B /\ X e. B /\ Y e. B ) ) ) |
| 23 | 1 2 | ringass | |- ( ( R e. Ring /\ ( a e. B /\ X e. B /\ Y e. B ) ) -> ( ( a .x. X ) .x. Y ) = ( a .x. ( X .x. Y ) ) ) |
| 24 | 22 23 | syl | |- ( ( ( ph /\ a e. B ) /\ ( a .x. X ) = .1. ) -> ( ( a .x. X ) .x. Y ) = ( a .x. ( X .x. Y ) ) ) |
| 25 | 15 24 | eqtrd | |- ( ( ( ph /\ a e. B ) /\ ( a .x. X ) = .1. ) -> ( .1. .x. Y ) = ( a .x. ( X .x. Y ) ) ) |
| 26 | 25 | adantr | |- ( ( ( ( ph /\ a e. B ) /\ ( a .x. X ) = .1. ) /\ ( X .x. Y ) = .0. ) -> ( .1. .x. Y ) = ( a .x. ( X .x. Y ) ) ) |
| 27 | oveq2 | |- ( ( X .x. Y ) = .0. -> ( a .x. ( X .x. Y ) ) = ( a .x. .0. ) ) |
|
| 28 | 1 2 4 | ringrz | |- ( ( R e. Ring /\ a e. B ) -> ( a .x. .0. ) = .0. ) |
| 29 | 5 28 | sylan | |- ( ( ph /\ a e. B ) -> ( a .x. .0. ) = .0. ) |
| 30 | 29 | adantr | |- ( ( ( ph /\ a e. B ) /\ ( a .x. X ) = .1. ) -> ( a .x. .0. ) = .0. ) |
| 31 | 27 30 | sylan9eqr | |- ( ( ( ( ph /\ a e. B ) /\ ( a .x. X ) = .1. ) /\ ( X .x. Y ) = .0. ) -> ( a .x. ( X .x. Y ) ) = .0. ) |
| 32 | 12 26 31 | 3eqtrd | |- ( ( ( ( ph /\ a e. B ) /\ ( a .x. X ) = .1. ) /\ ( X .x. Y ) = .0. ) -> Y = .0. ) |
| 33 | 32 | exp31 | |- ( ( ph /\ a e. B ) -> ( ( a .x. X ) = .1. -> ( ( X .x. Y ) = .0. -> Y = .0. ) ) ) |
| 34 | 33 | rexlimdva | |- ( ph -> ( E. a e. B ( a .x. X ) = .1. -> ( ( X .x. Y ) = .0. -> Y = .0. ) ) ) |
| 35 | 7 34 | mpd | |- ( ph -> ( ( X .x. Y ) = .0. -> Y = .0. ) ) |
| 36 | oveq2 | |- ( Y = .0. -> ( X .x. Y ) = ( X .x. .0. ) ) |
|
| 37 | 1 2 4 | ringrz | |- ( ( R e. Ring /\ X e. B ) -> ( X .x. .0. ) = .0. ) |
| 38 | 5 6 37 | syl2anc | |- ( ph -> ( X .x. .0. ) = .0. ) |
| 39 | 36 38 | sylan9eqr | |- ( ( ph /\ Y = .0. ) -> ( X .x. Y ) = .0. ) |
| 40 | 39 | ex | |- ( ph -> ( Y = .0. -> ( X .x. Y ) = .0. ) ) |
| 41 | 35 40 | impbid | |- ( ph -> ( ( X .x. Y ) = .0. <-> Y = .0. ) ) |