This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a unital ring, a left invertible element is different from zero iff .1. =/= .0. . (Contributed by FL, 18-Apr-2010) (Revised by AV, 24-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ringinvnzdiv.b | ||
| ringinvnzdiv.t | |||
| ringinvnzdiv.u | |||
| ringinvnzdiv.z | |||
| ringinvnzdiv.r | |||
| ringinvnzdiv.x | |||
| ringinvnzdiv.a | |||
| Assertion | ringinvnz1ne0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringinvnzdiv.b | ||
| 2 | ringinvnzdiv.t | ||
| 3 | ringinvnzdiv.u | ||
| 4 | ringinvnzdiv.z | ||
| 5 | ringinvnzdiv.r | ||
| 6 | ringinvnzdiv.x | ||
| 7 | ringinvnzdiv.a | ||
| 8 | oveq2 | ||
| 9 | 1 2 4 | ringrz | |
| 10 | 5 9 | sylan | |
| 11 | eqeq12 | ||
| 12 | 11 | biimpd | |
| 13 | 12 | ex | |
| 14 | 10 13 | mpan9 | |
| 15 | 8 14 | syl5 | |
| 16 | oveq2 | ||
| 17 | 1 2 3 | ringridm | |
| 18 | 1 2 4 | ringrz | |
| 19 | 17 18 | eqeq12d | |
| 20 | 19 | biimpd | |
| 21 | 5 6 20 | syl2anc | |
| 22 | 21 | ad2antrr | |
| 23 | 16 22 | syl5 | |
| 24 | 15 23 | impbid | |
| 25 | 24 7 | r19.29a | |
| 26 | 25 | necon3bid |