This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A ring is nonzero if it has a nonzero element. (Contributed by Stefan O'Rear, 6-Feb-2015) (Revised by Mario Carneiro, 13-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ringelnzr.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| ringelnzr.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | ||
| Assertion | ringelnzr | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ ( 𝐵 ∖ { 0 } ) ) → 𝑅 ∈ NzRing ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringelnzr.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 2 | ringelnzr.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 3 | simpl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ ( 𝐵 ∖ { 0 } ) ) → 𝑅 ∈ Ring ) | |
| 4 | eldifsni | ⊢ ( 𝑋 ∈ ( 𝐵 ∖ { 0 } ) → 𝑋 ≠ 0 ) | |
| 5 | 4 | adantl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ ( 𝐵 ∖ { 0 } ) ) → 𝑋 ≠ 0 ) |
| 6 | eldifi | ⊢ ( 𝑋 ∈ ( 𝐵 ∖ { 0 } ) → 𝑋 ∈ 𝐵 ) | |
| 7 | 6 | adantl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ ( 𝐵 ∖ { 0 } ) ) → 𝑋 ∈ 𝐵 ) |
| 8 | 2 1 | ring0cl | ⊢ ( 𝑅 ∈ Ring → 0 ∈ 𝐵 ) |
| 9 | 8 | adantr | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ ( 𝐵 ∖ { 0 } ) ) → 0 ∈ 𝐵 ) |
| 10 | eqid | ⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) | |
| 11 | 2 10 1 | ring1eq0 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵 ) → ( ( 1r ‘ 𝑅 ) = 0 → 𝑋 = 0 ) ) |
| 12 | 3 7 9 11 | syl3anc | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ ( 𝐵 ∖ { 0 } ) ) → ( ( 1r ‘ 𝑅 ) = 0 → 𝑋 = 0 ) ) |
| 13 | 12 | necon3d | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ ( 𝐵 ∖ { 0 } ) ) → ( 𝑋 ≠ 0 → ( 1r ‘ 𝑅 ) ≠ 0 ) ) |
| 14 | 5 13 | mpd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ ( 𝐵 ∖ { 0 } ) ) → ( 1r ‘ 𝑅 ) ≠ 0 ) |
| 15 | 10 1 | isnzr | ⊢ ( 𝑅 ∈ NzRing ↔ ( 𝑅 ∈ Ring ∧ ( 1r ‘ 𝑅 ) ≠ 0 ) ) |
| 16 | 3 14 15 | sylanbrc | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ ( 𝐵 ∖ { 0 } ) ) → 𝑅 ∈ NzRing ) |