This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Metamath Proof Explorer
Description: In a unitary ring, the ring unity is not a zero divisor. (Contributed by AV, 7-Mar-2025)
|
|
Ref |
Expression |
|
Hypotheses |
ringunitnzdiv.b |
|
|
|
ringunitnzdiv.z |
|
|
|
ringunitnzdiv.t |
|
|
|
ringunitnzdiv.r |
|
|
|
ringunitnzdiv.y |
|
|
|
ring1nzdiv.x |
|
|
Assertion |
ring1nzdiv |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ringunitnzdiv.b |
|
| 2 |
|
ringunitnzdiv.z |
|
| 3 |
|
ringunitnzdiv.t |
|
| 4 |
|
ringunitnzdiv.r |
|
| 5 |
|
ringunitnzdiv.y |
|
| 6 |
|
ring1nzdiv.x |
|
| 7 |
|
eqid |
|
| 8 |
7 6
|
1unit |
|
| 9 |
4 8
|
syl |
|
| 10 |
1 2 3 4 5 9
|
ringunitnzdiv |
|