This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 2 for rhmsubcsetc . (Contributed by AV, 9-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rhmsubcsetc.c | ⊢ 𝐶 = ( ExtStrCat ‘ 𝑈 ) | |
| rhmsubcsetc.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | ||
| rhmsubcsetc.b | ⊢ ( 𝜑 → 𝐵 = ( Ring ∩ 𝑈 ) ) | ||
| rhmsubcsetc.h | ⊢ ( 𝜑 → 𝐻 = ( RingHom ↾ ( 𝐵 × 𝐵 ) ) ) | ||
| Assertion | rhmsubcsetclem2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rhmsubcsetc.c | ⊢ 𝐶 = ( ExtStrCat ‘ 𝑈 ) | |
| 2 | rhmsubcsetc.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | |
| 3 | rhmsubcsetc.b | ⊢ ( 𝜑 → 𝐵 = ( Ring ∩ 𝑈 ) ) | |
| 4 | rhmsubcsetc.h | ⊢ ( 𝜑 → 𝐻 = ( RingHom ↾ ( 𝐵 × 𝐵 ) ) ) | |
| 5 | simpl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝜑 ) | |
| 6 | 5 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → 𝜑 ) |
| 7 | 6 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → 𝜑 ) |
| 8 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) | |
| 9 | 8 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) |
| 10 | simpr | ⊢ ( ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) → 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) | |
| 11 | 10 | adantl | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) |
| 12 | 4 | rhmresel | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) → 𝑔 ∈ ( 𝑦 RingHom 𝑧 ) ) |
| 13 | 7 9 11 12 | syl3anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → 𝑔 ∈ ( 𝑦 RingHom 𝑧 ) ) |
| 14 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) | |
| 15 | simpl | ⊢ ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → 𝑦 ∈ 𝐵 ) | |
| 16 | 14 15 | anim12i | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) |
| 17 | 16 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) |
| 18 | simprl | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ) | |
| 19 | 4 | rhmresel | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ) → 𝑓 ∈ ( 𝑥 RingHom 𝑦 ) ) |
| 20 | 7 17 18 19 | syl3anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → 𝑓 ∈ ( 𝑥 RingHom 𝑦 ) ) |
| 21 | rhmco | ⊢ ( ( 𝑔 ∈ ( 𝑦 RingHom 𝑧 ) ∧ 𝑓 ∈ ( 𝑥 RingHom 𝑦 ) ) → ( 𝑔 ∘ 𝑓 ) ∈ ( 𝑥 RingHom 𝑧 ) ) | |
| 22 | 13 20 21 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → ( 𝑔 ∘ 𝑓 ) ∈ ( 𝑥 RingHom 𝑧 ) ) |
| 23 | 2 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → 𝑈 ∈ 𝑉 ) |
| 24 | eqid | ⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) | |
| 25 | 3 | eleq2d | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↔ 𝑥 ∈ ( Ring ∩ 𝑈 ) ) ) |
| 26 | elinel2 | ⊢ ( 𝑥 ∈ ( Ring ∩ 𝑈 ) → 𝑥 ∈ 𝑈 ) | |
| 27 | 25 26 | biimtrdi | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 → 𝑥 ∈ 𝑈 ) ) |
| 28 | 27 | imp | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝑈 ) |
| 29 | 28 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → 𝑥 ∈ 𝑈 ) |
| 30 | 29 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → 𝑥 ∈ 𝑈 ) |
| 31 | 3 | eleq2d | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐵 ↔ 𝑦 ∈ ( Ring ∩ 𝑈 ) ) ) |
| 32 | elinel2 | ⊢ ( 𝑦 ∈ ( Ring ∩ 𝑈 ) → 𝑦 ∈ 𝑈 ) | |
| 33 | 31 32 | biimtrdi | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝑈 ) ) |
| 34 | 33 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝑈 ) ) |
| 35 | 34 | com12 | ⊢ ( 𝑦 ∈ 𝐵 → ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑦 ∈ 𝑈 ) ) |
| 36 | 35 | adantr | ⊢ ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑦 ∈ 𝑈 ) ) |
| 37 | 36 | impcom | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → 𝑦 ∈ 𝑈 ) |
| 38 | 37 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → 𝑦 ∈ 𝑈 ) |
| 39 | 3 | eleq2d | ⊢ ( 𝜑 → ( 𝑧 ∈ 𝐵 ↔ 𝑧 ∈ ( Ring ∩ 𝑈 ) ) ) |
| 40 | elinel2 | ⊢ ( 𝑧 ∈ ( Ring ∩ 𝑈 ) → 𝑧 ∈ 𝑈 ) | |
| 41 | 39 40 | biimtrdi | ⊢ ( 𝜑 → ( 𝑧 ∈ 𝐵 → 𝑧 ∈ 𝑈 ) ) |
| 42 | 41 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑧 ∈ 𝐵 → 𝑧 ∈ 𝑈 ) ) |
| 43 | 42 | adantld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → 𝑧 ∈ 𝑈 ) ) |
| 44 | 43 | imp | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → 𝑧 ∈ 𝑈 ) |
| 45 | 44 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → 𝑧 ∈ 𝑈 ) |
| 46 | eqid | ⊢ ( Base ‘ 𝑥 ) = ( Base ‘ 𝑥 ) | |
| 47 | eqid | ⊢ ( Base ‘ 𝑦 ) = ( Base ‘ 𝑦 ) | |
| 48 | eqid | ⊢ ( Base ‘ 𝑧 ) = ( Base ‘ 𝑧 ) | |
| 49 | simprl | ⊢ ( ( 𝑦 ∈ 𝐵 ∧ ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ) → 𝜑 ) | |
| 50 | 49 | adantr | ⊢ ( ( ( 𝑦 ∈ 𝐵 ∧ ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ) ∧ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ) → 𝜑 ) |
| 51 | 14 | anim1i | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) |
| 52 | 51 | ancoms | ⊢ ( ( 𝑦 ∈ 𝐵 ∧ ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ) → ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) |
| 53 | 52 | adantr | ⊢ ( ( ( 𝑦 ∈ 𝐵 ∧ ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ) ∧ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ) → ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) |
| 54 | simpr | ⊢ ( ( ( 𝑦 ∈ 𝐵 ∧ ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ) ∧ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ) → 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ) | |
| 55 | 50 53 54 19 | syl3anc | ⊢ ( ( ( 𝑦 ∈ 𝐵 ∧ ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ) ∧ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ) → 𝑓 ∈ ( 𝑥 RingHom 𝑦 ) ) |
| 56 | 46 47 | rhmf | ⊢ ( 𝑓 ∈ ( 𝑥 RingHom 𝑦 ) → 𝑓 : ( Base ‘ 𝑥 ) ⟶ ( Base ‘ 𝑦 ) ) |
| 57 | 55 56 | syl | ⊢ ( ( ( 𝑦 ∈ 𝐵 ∧ ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ) ∧ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ) → 𝑓 : ( Base ‘ 𝑥 ) ⟶ ( Base ‘ 𝑦 ) ) |
| 58 | 57 | ex | ⊢ ( ( 𝑦 ∈ 𝐵 ∧ ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ) → ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) → 𝑓 : ( Base ‘ 𝑥 ) ⟶ ( Base ‘ 𝑦 ) ) ) |
| 59 | 58 | ex | ⊢ ( 𝑦 ∈ 𝐵 → ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) → 𝑓 : ( Base ‘ 𝑥 ) ⟶ ( Base ‘ 𝑦 ) ) ) ) |
| 60 | 59 | adantr | ⊢ ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) → 𝑓 : ( Base ‘ 𝑥 ) ⟶ ( Base ‘ 𝑦 ) ) ) ) |
| 61 | 60 | impcom | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) → 𝑓 : ( Base ‘ 𝑥 ) ⟶ ( Base ‘ 𝑦 ) ) ) |
| 62 | 61 | com12 | ⊢ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) → ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → 𝑓 : ( Base ‘ 𝑥 ) ⟶ ( Base ‘ 𝑦 ) ) ) |
| 63 | 62 | adantr | ⊢ ( ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) → ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → 𝑓 : ( Base ‘ 𝑥 ) ⟶ ( Base ‘ 𝑦 ) ) ) |
| 64 | 63 | impcom | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → 𝑓 : ( Base ‘ 𝑥 ) ⟶ ( Base ‘ 𝑦 ) ) |
| 65 | 12 | 3expa | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) → 𝑔 ∈ ( 𝑦 RingHom 𝑧 ) ) |
| 66 | 47 48 | rhmf | ⊢ ( 𝑔 ∈ ( 𝑦 RingHom 𝑧 ) → 𝑔 : ( Base ‘ 𝑦 ) ⟶ ( Base ‘ 𝑧 ) ) |
| 67 | 65 66 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) → 𝑔 : ( Base ‘ 𝑦 ) ⟶ ( Base ‘ 𝑧 ) ) |
| 68 | 67 | ex | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) → 𝑔 : ( Base ‘ 𝑦 ) ⟶ ( Base ‘ 𝑧 ) ) ) |
| 69 | 68 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) → 𝑔 : ( Base ‘ 𝑦 ) ⟶ ( Base ‘ 𝑧 ) ) ) |
| 70 | 69 | adantld | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) → 𝑔 : ( Base ‘ 𝑦 ) ⟶ ( Base ‘ 𝑧 ) ) ) |
| 71 | 70 | imp | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → 𝑔 : ( Base ‘ 𝑦 ) ⟶ ( Base ‘ 𝑧 ) ) |
| 72 | 1 23 24 30 38 45 46 47 48 64 71 | estrcco | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) = ( 𝑔 ∘ 𝑓 ) ) |
| 73 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝐻 = ( RingHom ↾ ( 𝐵 × 𝐵 ) ) ) |
| 74 | 73 | oveqdr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑥 𝐻 𝑧 ) = ( 𝑥 ( RingHom ↾ ( 𝐵 × 𝐵 ) ) 𝑧 ) ) |
| 75 | ovres | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( 𝑥 ( RingHom ↾ ( 𝐵 × 𝐵 ) ) 𝑧 ) = ( 𝑥 RingHom 𝑧 ) ) | |
| 76 | 75 | ad2ant2l | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑥 ( RingHom ↾ ( 𝐵 × 𝐵 ) ) 𝑧 ) = ( 𝑥 RingHom 𝑧 ) ) |
| 77 | 74 76 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑥 𝐻 𝑧 ) = ( 𝑥 RingHom 𝑧 ) ) |
| 78 | 77 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → ( 𝑥 𝐻 𝑧 ) = ( 𝑥 RingHom 𝑧 ) ) |
| 79 | 22 72 78 | 3eltr4d | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ) |
| 80 | 79 | ralrimivva | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ) |
| 81 | 80 | ralrimivva | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ) |