This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Existential quantification over a class abstraction. (Contributed by Mario Carneiro, 3-Sep-2015) Drop ax-8 . (Revised by GG, 1-Dec-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ralab2.1 | |- ( x = y -> ( ps <-> ch ) ) |
|
| Assertion | rexab2 | |- ( E. x e. { y | ph } ps <-> E. y ( ph /\ ch ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralab2.1 | |- ( x = y -> ( ps <-> ch ) ) |
|
| 2 | df-rex | |- ( E. x e. { y | ph } ps <-> E. x ( x e. { y | ph } /\ ps ) ) |
|
| 3 | nfsab1 | |- F/ y x e. { y | ph } |
|
| 4 | nfv | |- F/ y ps |
|
| 5 | 3 4 | nfan | |- F/ y ( x e. { y | ph } /\ ps ) |
| 6 | nfv | |- F/ x ( ph /\ ch ) |
|
| 7 | eleq1ab | |- ( x = y -> ( x e. { y | ph } <-> y e. { y | ph } ) ) |
|
| 8 | abid | |- ( y e. { y | ph } <-> ph ) |
|
| 9 | 7 8 | bitrdi | |- ( x = y -> ( x e. { y | ph } <-> ph ) ) |
| 10 | 9 1 | anbi12d | |- ( x = y -> ( ( x e. { y | ph } /\ ps ) <-> ( ph /\ ch ) ) ) |
| 11 | 5 6 10 | cbvexv1 | |- ( E. x ( x e. { y | ph } /\ ps ) <-> E. y ( ph /\ ch ) ) |
| 12 | 2 11 | bitri | |- ( E. x e. { y | ph } ps <-> E. y ( ph /\ ch ) ) |