This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Existential uniqueness implies there is a value for which the wff argument is false. (Contributed by NM, 24-Oct-2010) (Proof shortened by BJ, 2-Jan-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eunex | ⊢ ( ∃! 𝑥 𝜑 → ∃ 𝑥 ¬ 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dtruALT2 | ⊢ ¬ ∀ 𝑥 𝑥 = 𝑦 | |
| 2 | albi | ⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) → ( ∀ 𝑥 𝜑 ↔ ∀ 𝑥 𝑥 = 𝑦 ) ) | |
| 3 | 1 2 | mtbiri | ⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) → ¬ ∀ 𝑥 𝜑 ) |
| 4 | 3 | exlimiv | ⊢ ( ∃ 𝑦 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) → ¬ ∀ 𝑥 𝜑 ) |
| 5 | eu6 | ⊢ ( ∃! 𝑥 𝜑 ↔ ∃ 𝑦 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) | |
| 6 | exnal | ⊢ ( ∃ 𝑥 ¬ 𝜑 ↔ ¬ ∀ 𝑥 𝜑 ) | |
| 7 | 4 5 6 | 3imtr4i | ⊢ ( ∃! 𝑥 𝜑 → ∃ 𝑥 ¬ 𝜑 ) |