This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restricted uniqueness "picks" a member of a subclass. (Contributed by Mario Carneiro, 19-Nov-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | reupick3 | ⊢ ( ( ∃! 𝑥 ∈ 𝐴 𝜑 ∧ ∃ 𝑥 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝜑 → 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-reu | ⊢ ( ∃! 𝑥 ∈ 𝐴 𝜑 ↔ ∃! 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) | |
| 2 | df-rex | ⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ ( 𝜑 ∧ 𝜓 ) ) ) | |
| 3 | anass | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ 𝜓 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( 𝜑 ∧ 𝜓 ) ) ) | |
| 4 | 3 | exbii | ⊢ ( ∃ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ 𝜓 ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ ( 𝜑 ∧ 𝜓 ) ) ) |
| 5 | 2 4 | bitr4i | ⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) ↔ ∃ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ 𝜓 ) ) |
| 6 | eupick | ⊢ ( ( ∃! 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ ∃ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ 𝜓 ) ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → 𝜓 ) ) | |
| 7 | 1 5 6 | syl2anb | ⊢ ( ( ∃! 𝑥 ∈ 𝐴 𝜑 ∧ ∃ 𝑥 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → 𝜓 ) ) |
| 8 | 7 | expd | ⊢ ( ( ∃! 𝑥 ∈ 𝐴 𝜑 ∧ ∃ 𝑥 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) ) → ( 𝑥 ∈ 𝐴 → ( 𝜑 → 𝜓 ) ) ) |
| 9 | 8 | 3impia | ⊢ ( ( ∃! 𝑥 ∈ 𝐴 𝜑 ∧ ∃ 𝑥 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝜑 → 𝜓 ) ) |