This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restricted uniqueness "picks" a member of a subclass. (Contributed by Mario Carneiro, 19-Nov-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | reupick3 | |- ( ( E! x e. A ph /\ E. x e. A ( ph /\ ps ) /\ x e. A ) -> ( ph -> ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-reu | |- ( E! x e. A ph <-> E! x ( x e. A /\ ph ) ) |
|
| 2 | df-rex | |- ( E. x e. A ( ph /\ ps ) <-> E. x ( x e. A /\ ( ph /\ ps ) ) ) |
|
| 3 | anass | |- ( ( ( x e. A /\ ph ) /\ ps ) <-> ( x e. A /\ ( ph /\ ps ) ) ) |
|
| 4 | 3 | exbii | |- ( E. x ( ( x e. A /\ ph ) /\ ps ) <-> E. x ( x e. A /\ ( ph /\ ps ) ) ) |
| 5 | 2 4 | bitr4i | |- ( E. x e. A ( ph /\ ps ) <-> E. x ( ( x e. A /\ ph ) /\ ps ) ) |
| 6 | eupick | |- ( ( E! x ( x e. A /\ ph ) /\ E. x ( ( x e. A /\ ph ) /\ ps ) ) -> ( ( x e. A /\ ph ) -> ps ) ) |
|
| 7 | 1 5 6 | syl2anb | |- ( ( E! x e. A ph /\ E. x e. A ( ph /\ ps ) ) -> ( ( x e. A /\ ph ) -> ps ) ) |
| 8 | 7 | expd | |- ( ( E! x e. A ph /\ E. x e. A ( ph /\ ps ) ) -> ( x e. A -> ( ph -> ps ) ) ) |
| 9 | 8 | 3impia | |- ( ( E! x e. A ph /\ E. x e. A ( ph /\ ps ) /\ x e. A ) -> ( ph -> ps ) ) |