This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduce equality from restricted uniqueness, deduction version. (Contributed by Thierry Arnoux, 27-Nov-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | reu2eqd.1 | ||
| reu2eqd.2 | |||
| reu2eqd.3 | |||
| reu2eqd.4 | |||
| reu2eqd.5 | |||
| reu2eqd.6 | |||
| reu2eqd.7 | |||
| Assertion | reu2eqd |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reu2eqd.1 | ||
| 2 | reu2eqd.2 | ||
| 3 | reu2eqd.3 | ||
| 4 | reu2eqd.4 | ||
| 5 | reu2eqd.5 | ||
| 6 | reu2eqd.6 | ||
| 7 | reu2eqd.7 | ||
| 8 | reu2 | ||
| 9 | 3 8 | sylib | |
| 10 | 9 | simprd | |
| 11 | nfv | ||
| 12 | nfs1v | ||
| 13 | 11 12 | nfan | |
| 14 | nfv | ||
| 15 | 13 14 | nfim | |
| 16 | nfv | ||
| 17 | 1 | anbi1d | |
| 18 | eqeq1 | ||
| 19 | 17 18 | imbi12d | |
| 20 | nfv | ||
| 21 | 20 2 | sbhypf | |
| 22 | 21 | anbi2d | |
| 23 | eqeq2 | ||
| 24 | 22 23 | imbi12d | |
| 25 | 15 16 19 24 | rspc2 | |
| 26 | 4 5 25 | syl2anc | |
| 27 | 10 26 | mpd | |
| 28 | 6 7 27 | mp2and |