This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Other elements of a scalar restriction. (Contributed by Thierry Arnoux, 6-Sep-2018) (Revised by AV, 31-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | resvlem.r | ⊢ 𝑅 = ( 𝑊 ↾v 𝐴 ) | |
| resvlem.e | ⊢ 𝐶 = ( 𝐸 ‘ 𝑊 ) | ||
| resvlem.f | ⊢ 𝐸 = Slot ( 𝐸 ‘ ndx ) | ||
| resvlem.n | ⊢ ( 𝐸 ‘ ndx ) ≠ ( Scalar ‘ ndx ) | ||
| Assertion | resvlem | ⊢ ( 𝐴 ∈ 𝑉 → 𝐶 = ( 𝐸 ‘ 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resvlem.r | ⊢ 𝑅 = ( 𝑊 ↾v 𝐴 ) | |
| 2 | resvlem.e | ⊢ 𝐶 = ( 𝐸 ‘ 𝑊 ) | |
| 3 | resvlem.f | ⊢ 𝐸 = Slot ( 𝐸 ‘ ndx ) | |
| 4 | resvlem.n | ⊢ ( 𝐸 ‘ ndx ) ≠ ( Scalar ‘ ndx ) | |
| 5 | eqid | ⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) | |
| 6 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) | |
| 7 | 1 5 6 | resvid2 | ⊢ ( ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉 ) → 𝑅 = 𝑊 ) |
| 8 | 7 | fveq2d | ⊢ ( ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉 ) → ( 𝐸 ‘ 𝑅 ) = ( 𝐸 ‘ 𝑊 ) ) |
| 9 | 8 | 3expib | ⊢ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ⊆ 𝐴 → ( ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉 ) → ( 𝐸 ‘ 𝑅 ) = ( 𝐸 ‘ 𝑊 ) ) ) |
| 10 | 1 5 6 | resvval2 | ⊢ ( ( ¬ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉 ) → 𝑅 = ( 𝑊 sSet 〈 ( Scalar ‘ ndx ) , ( ( Scalar ‘ 𝑊 ) ↾s 𝐴 ) 〉 ) ) |
| 11 | 10 | fveq2d | ⊢ ( ( ¬ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉 ) → ( 𝐸 ‘ 𝑅 ) = ( 𝐸 ‘ ( 𝑊 sSet 〈 ( Scalar ‘ ndx ) , ( ( Scalar ‘ 𝑊 ) ↾s 𝐴 ) 〉 ) ) ) |
| 12 | 3 4 | setsnid | ⊢ ( 𝐸 ‘ 𝑊 ) = ( 𝐸 ‘ ( 𝑊 sSet 〈 ( Scalar ‘ ndx ) , ( ( Scalar ‘ 𝑊 ) ↾s 𝐴 ) 〉 ) ) |
| 13 | 11 12 | eqtr4di | ⊢ ( ( ¬ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉 ) → ( 𝐸 ‘ 𝑅 ) = ( 𝐸 ‘ 𝑊 ) ) |
| 14 | 13 | 3expib | ⊢ ( ¬ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ⊆ 𝐴 → ( ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉 ) → ( 𝐸 ‘ 𝑅 ) = ( 𝐸 ‘ 𝑊 ) ) ) |
| 15 | 9 14 | pm2.61i | ⊢ ( ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉 ) → ( 𝐸 ‘ 𝑅 ) = ( 𝐸 ‘ 𝑊 ) ) |
| 16 | 3 | str0 | ⊢ ∅ = ( 𝐸 ‘ ∅ ) |
| 17 | 16 | eqcomi | ⊢ ( 𝐸 ‘ ∅ ) = ∅ |
| 18 | reldmresv | ⊢ Rel dom ↾v | |
| 19 | 17 1 18 | oveqprc | ⊢ ( ¬ 𝑊 ∈ V → ( 𝐸 ‘ 𝑊 ) = ( 𝐸 ‘ 𝑅 ) ) |
| 20 | 19 | eqcomd | ⊢ ( ¬ 𝑊 ∈ V → ( 𝐸 ‘ 𝑅 ) = ( 𝐸 ‘ 𝑊 ) ) |
| 21 | 20 | adantr | ⊢ ( ( ¬ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉 ) → ( 𝐸 ‘ 𝑅 ) = ( 𝐸 ‘ 𝑊 ) ) |
| 22 | 15 21 | pm2.61ian | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐸 ‘ 𝑅 ) = ( 𝐸 ‘ 𝑊 ) ) |
| 23 | 2 22 | eqtr4id | ⊢ ( 𝐴 ∈ 𝑉 → 𝐶 = ( 𝐸 ‘ 𝑅 ) ) |