This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: 0g is unaffected by scalar restriction. (Contributed by Thierry Arnoux, 6-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | resvbas.1 | ⊢ 𝐻 = ( 𝐺 ↾v 𝐴 ) | |
| resv0g.2 | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| Assertion | resv0g | ⊢ ( 𝐴 ∈ 𝑉 → 0 = ( 0g ‘ 𝐻 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resvbas.1 | ⊢ 𝐻 = ( 𝐺 ↾v 𝐴 ) | |
| 2 | resv0g.2 | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 3 | eqidd | ⊢ ( 𝐴 ∈ 𝑉 → ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) ) | |
| 4 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 5 | 1 4 | resvbas | ⊢ ( 𝐴 ∈ 𝑉 → ( Base ‘ 𝐺 ) = ( Base ‘ 𝐻 ) ) |
| 6 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 7 | 1 6 | resvplusg | ⊢ ( 𝐴 ∈ 𝑉 → ( +g ‘ 𝐺 ) = ( +g ‘ 𝐻 ) ) |
| 8 | 7 | oveqdr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) ) |
| 9 | 3 5 8 | grpidpropd | ⊢ ( 𝐴 ∈ 𝑉 → ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐻 ) ) |
| 10 | 2 9 | eqtrid | ⊢ ( 𝐴 ∈ 𝑉 → 0 = ( 0g ‘ 𝐻 ) ) |