This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: 0g is unaffected by scalar restriction. (Contributed by Thierry Arnoux, 6-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | resvbas.1 | |- H = ( G |`v A ) |
|
| resv0g.2 | |- .0. = ( 0g ` G ) |
||
| Assertion | resv0g | |- ( A e. V -> .0. = ( 0g ` H ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resvbas.1 | |- H = ( G |`v A ) |
|
| 2 | resv0g.2 | |- .0. = ( 0g ` G ) |
|
| 3 | eqidd | |- ( A e. V -> ( Base ` G ) = ( Base ` G ) ) |
|
| 4 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 5 | 1 4 | resvbas | |- ( A e. V -> ( Base ` G ) = ( Base ` H ) ) |
| 6 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 7 | 1 6 | resvplusg | |- ( A e. V -> ( +g ` G ) = ( +g ` H ) ) |
| 8 | 7 | oveqdr | |- ( ( A e. V /\ ( x e. ( Base ` G ) /\ y e. ( Base ` G ) ) ) -> ( x ( +g ` G ) y ) = ( x ( +g ` H ) y ) ) |
| 9 | 3 5 8 | grpidpropd | |- ( A e. V -> ( 0g ` G ) = ( 0g ` H ) ) |
| 10 | 2 9 | eqtrid | |- ( A e. V -> .0. = ( 0g ` H ) ) |