This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the R -image of a class A is a subclass of B , then the restriction of R to A is a subset of the Cartesian product of A and B . (Contributed by RP, 24-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | resssxp | ⊢ ( ( 𝑅 “ 𝐴 ) ⊆ 𝐵 ↔ ( 𝑅 ↾ 𝐴 ) ⊆ ( 𝐴 × 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ima | ⊢ ( 𝑅 “ 𝐴 ) = ran ( 𝑅 ↾ 𝐴 ) | |
| 2 | 1 | sseq1i | ⊢ ( ( 𝑅 “ 𝐴 ) ⊆ 𝐵 ↔ ran ( 𝑅 ↾ 𝐴 ) ⊆ 𝐵 ) |
| 3 | dmres | ⊢ dom ( 𝑅 ↾ 𝐴 ) = ( 𝐴 ∩ dom 𝑅 ) | |
| 4 | inss1 | ⊢ ( 𝐴 ∩ dom 𝑅 ) ⊆ 𝐴 | |
| 5 | 3 4 | eqsstri | ⊢ dom ( 𝑅 ↾ 𝐴 ) ⊆ 𝐴 |
| 6 | 5 | biantrur | ⊢ ( ran ( 𝑅 ↾ 𝐴 ) ⊆ 𝐵 ↔ ( dom ( 𝑅 ↾ 𝐴 ) ⊆ 𝐴 ∧ ran ( 𝑅 ↾ 𝐴 ) ⊆ 𝐵 ) ) |
| 7 | relres | ⊢ Rel ( 𝑅 ↾ 𝐴 ) | |
| 8 | relssdmrn | ⊢ ( Rel ( 𝑅 ↾ 𝐴 ) → ( 𝑅 ↾ 𝐴 ) ⊆ ( dom ( 𝑅 ↾ 𝐴 ) × ran ( 𝑅 ↾ 𝐴 ) ) ) | |
| 9 | 7 8 | ax-mp | ⊢ ( 𝑅 ↾ 𝐴 ) ⊆ ( dom ( 𝑅 ↾ 𝐴 ) × ran ( 𝑅 ↾ 𝐴 ) ) |
| 10 | xpss12 | ⊢ ( ( dom ( 𝑅 ↾ 𝐴 ) ⊆ 𝐴 ∧ ran ( 𝑅 ↾ 𝐴 ) ⊆ 𝐵 ) → ( dom ( 𝑅 ↾ 𝐴 ) × ran ( 𝑅 ↾ 𝐴 ) ) ⊆ ( 𝐴 × 𝐵 ) ) | |
| 11 | 9 10 | sstrid | ⊢ ( ( dom ( 𝑅 ↾ 𝐴 ) ⊆ 𝐴 ∧ ran ( 𝑅 ↾ 𝐴 ) ⊆ 𝐵 ) → ( 𝑅 ↾ 𝐴 ) ⊆ ( 𝐴 × 𝐵 ) ) |
| 12 | dmss | ⊢ ( ( 𝑅 ↾ 𝐴 ) ⊆ ( 𝐴 × 𝐵 ) → dom ( 𝑅 ↾ 𝐴 ) ⊆ dom ( 𝐴 × 𝐵 ) ) | |
| 13 | dmxpss | ⊢ dom ( 𝐴 × 𝐵 ) ⊆ 𝐴 | |
| 14 | 12 13 | sstrdi | ⊢ ( ( 𝑅 ↾ 𝐴 ) ⊆ ( 𝐴 × 𝐵 ) → dom ( 𝑅 ↾ 𝐴 ) ⊆ 𝐴 ) |
| 15 | rnss | ⊢ ( ( 𝑅 ↾ 𝐴 ) ⊆ ( 𝐴 × 𝐵 ) → ran ( 𝑅 ↾ 𝐴 ) ⊆ ran ( 𝐴 × 𝐵 ) ) | |
| 16 | rnxpss | ⊢ ran ( 𝐴 × 𝐵 ) ⊆ 𝐵 | |
| 17 | 15 16 | sstrdi | ⊢ ( ( 𝑅 ↾ 𝐴 ) ⊆ ( 𝐴 × 𝐵 ) → ran ( 𝑅 ↾ 𝐴 ) ⊆ 𝐵 ) |
| 18 | 14 17 | jca | ⊢ ( ( 𝑅 ↾ 𝐴 ) ⊆ ( 𝐴 × 𝐵 ) → ( dom ( 𝑅 ↾ 𝐴 ) ⊆ 𝐴 ∧ ran ( 𝑅 ↾ 𝐴 ) ⊆ 𝐵 ) ) |
| 19 | 11 18 | impbii | ⊢ ( ( dom ( 𝑅 ↾ 𝐴 ) ⊆ 𝐴 ∧ ran ( 𝑅 ↾ 𝐴 ) ⊆ 𝐵 ) ↔ ( 𝑅 ↾ 𝐴 ) ⊆ ( 𝐴 × 𝐵 ) ) |
| 20 | 2 6 19 | 3bitri | ⊢ ( ( 𝑅 “ 𝐴 ) ⊆ 𝐵 ↔ ( 𝑅 ↾ 𝐴 ) ⊆ ( 𝐴 × 𝐵 ) ) |