This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the R -image of a class A is a subclass of B , then the restriction of R to A is a subset of the Cartesian product of A and B . (Contributed by RP, 24-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | resssxp | |- ( ( R " A ) C_ B <-> ( R |` A ) C_ ( A X. B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ima | |- ( R " A ) = ran ( R |` A ) |
|
| 2 | 1 | sseq1i | |- ( ( R " A ) C_ B <-> ran ( R |` A ) C_ B ) |
| 3 | dmres | |- dom ( R |` A ) = ( A i^i dom R ) |
|
| 4 | inss1 | |- ( A i^i dom R ) C_ A |
|
| 5 | 3 4 | eqsstri | |- dom ( R |` A ) C_ A |
| 6 | 5 | biantrur | |- ( ran ( R |` A ) C_ B <-> ( dom ( R |` A ) C_ A /\ ran ( R |` A ) C_ B ) ) |
| 7 | relres | |- Rel ( R |` A ) |
|
| 8 | relssdmrn | |- ( Rel ( R |` A ) -> ( R |` A ) C_ ( dom ( R |` A ) X. ran ( R |` A ) ) ) |
|
| 9 | 7 8 | ax-mp | |- ( R |` A ) C_ ( dom ( R |` A ) X. ran ( R |` A ) ) |
| 10 | xpss12 | |- ( ( dom ( R |` A ) C_ A /\ ran ( R |` A ) C_ B ) -> ( dom ( R |` A ) X. ran ( R |` A ) ) C_ ( A X. B ) ) |
|
| 11 | 9 10 | sstrid | |- ( ( dom ( R |` A ) C_ A /\ ran ( R |` A ) C_ B ) -> ( R |` A ) C_ ( A X. B ) ) |
| 12 | dmss | |- ( ( R |` A ) C_ ( A X. B ) -> dom ( R |` A ) C_ dom ( A X. B ) ) |
|
| 13 | dmxpss | |- dom ( A X. B ) C_ A |
|
| 14 | 12 13 | sstrdi | |- ( ( R |` A ) C_ ( A X. B ) -> dom ( R |` A ) C_ A ) |
| 15 | rnss | |- ( ( R |` A ) C_ ( A X. B ) -> ran ( R |` A ) C_ ran ( A X. B ) ) |
|
| 16 | rnxpss | |- ran ( A X. B ) C_ B |
|
| 17 | 15 16 | sstrdi | |- ( ( R |` A ) C_ ( A X. B ) -> ran ( R |` A ) C_ B ) |
| 18 | 14 17 | jca | |- ( ( R |` A ) C_ ( A X. B ) -> ( dom ( R |` A ) C_ A /\ ran ( R |` A ) C_ B ) ) |
| 19 | 11 18 | impbii | |- ( ( dom ( R |` A ) C_ A /\ ran ( R |` A ) C_ B ) <-> ( R |` A ) C_ ( A X. B ) ) |
| 20 | 2 6 19 | 3bitri | |- ( ( R " A ) C_ B <-> ( R |` A ) C_ ( A X. B ) ) |