This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A restricted polynomial algebra has the same addition operation. (Contributed by Mario Carneiro, 3-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ressmpl.s | ⊢ 𝑆 = ( 𝐼 mPoly 𝑅 ) | |
| ressmpl.h | ⊢ 𝐻 = ( 𝑅 ↾s 𝑇 ) | ||
| ressmpl.u | ⊢ 𝑈 = ( 𝐼 mPoly 𝐻 ) | ||
| ressmpl.b | ⊢ 𝐵 = ( Base ‘ 𝑈 ) | ||
| ressmpl.1 | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | ||
| ressmpl.2 | ⊢ ( 𝜑 → 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) | ||
| ressmpl.p | ⊢ 𝑃 = ( 𝑆 ↾s 𝐵 ) | ||
| Assertion | ressmpladd | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑋 ( +g ‘ 𝑈 ) 𝑌 ) = ( 𝑋 ( +g ‘ 𝑃 ) 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressmpl.s | ⊢ 𝑆 = ( 𝐼 mPoly 𝑅 ) | |
| 2 | ressmpl.h | ⊢ 𝐻 = ( 𝑅 ↾s 𝑇 ) | |
| 3 | ressmpl.u | ⊢ 𝑈 = ( 𝐼 mPoly 𝐻 ) | |
| 4 | ressmpl.b | ⊢ 𝐵 = ( Base ‘ 𝑈 ) | |
| 5 | ressmpl.1 | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | |
| 6 | ressmpl.2 | ⊢ ( 𝜑 → 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) | |
| 7 | ressmpl.p | ⊢ 𝑃 = ( 𝑆 ↾s 𝐵 ) | |
| 8 | eqid | ⊢ ( 𝐼 mPwSer 𝐻 ) = ( 𝐼 mPwSer 𝐻 ) | |
| 9 | eqid | ⊢ ( Base ‘ ( 𝐼 mPwSer 𝐻 ) ) = ( Base ‘ ( 𝐼 mPwSer 𝐻 ) ) | |
| 10 | 3 8 4 9 | mplbasss | ⊢ 𝐵 ⊆ ( Base ‘ ( 𝐼 mPwSer 𝐻 ) ) |
| 11 | 10 | sseli | ⊢ ( 𝑋 ∈ 𝐵 → 𝑋 ∈ ( Base ‘ ( 𝐼 mPwSer 𝐻 ) ) ) |
| 12 | 10 | sseli | ⊢ ( 𝑌 ∈ 𝐵 → 𝑌 ∈ ( Base ‘ ( 𝐼 mPwSer 𝐻 ) ) ) |
| 13 | 11 12 | anim12i | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∈ ( Base ‘ ( 𝐼 mPwSer 𝐻 ) ) ∧ 𝑌 ∈ ( Base ‘ ( 𝐼 mPwSer 𝐻 ) ) ) ) |
| 14 | eqid | ⊢ ( 𝐼 mPwSer 𝑅 ) = ( 𝐼 mPwSer 𝑅 ) | |
| 15 | eqid | ⊢ ( ( 𝐼 mPwSer 𝑅 ) ↾s ( Base ‘ ( 𝐼 mPwSer 𝐻 ) ) ) = ( ( 𝐼 mPwSer 𝑅 ) ↾s ( Base ‘ ( 𝐼 mPwSer 𝐻 ) ) ) | |
| 16 | 14 2 8 9 15 6 | resspsradd | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ ( Base ‘ ( 𝐼 mPwSer 𝐻 ) ) ∧ 𝑌 ∈ ( Base ‘ ( 𝐼 mPwSer 𝐻 ) ) ) ) → ( 𝑋 ( +g ‘ ( 𝐼 mPwSer 𝐻 ) ) 𝑌 ) = ( 𝑋 ( +g ‘ ( ( 𝐼 mPwSer 𝑅 ) ↾s ( Base ‘ ( 𝐼 mPwSer 𝐻 ) ) ) ) 𝑌 ) ) |
| 17 | 13 16 | sylan2 | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑋 ( +g ‘ ( 𝐼 mPwSer 𝐻 ) ) 𝑌 ) = ( 𝑋 ( +g ‘ ( ( 𝐼 mPwSer 𝑅 ) ↾s ( Base ‘ ( 𝐼 mPwSer 𝐻 ) ) ) ) 𝑌 ) ) |
| 18 | 4 | fvexi | ⊢ 𝐵 ∈ V |
| 19 | 3 8 4 | mplval2 | ⊢ 𝑈 = ( ( 𝐼 mPwSer 𝐻 ) ↾s 𝐵 ) |
| 20 | eqid | ⊢ ( +g ‘ ( 𝐼 mPwSer 𝐻 ) ) = ( +g ‘ ( 𝐼 mPwSer 𝐻 ) ) | |
| 21 | 19 20 | ressplusg | ⊢ ( 𝐵 ∈ V → ( +g ‘ ( 𝐼 mPwSer 𝐻 ) ) = ( +g ‘ 𝑈 ) ) |
| 22 | 18 21 | ax-mp | ⊢ ( +g ‘ ( 𝐼 mPwSer 𝐻 ) ) = ( +g ‘ 𝑈 ) |
| 23 | 22 | oveqi | ⊢ ( 𝑋 ( +g ‘ ( 𝐼 mPwSer 𝐻 ) ) 𝑌 ) = ( 𝑋 ( +g ‘ 𝑈 ) 𝑌 ) |
| 24 | fvex | ⊢ ( Base ‘ 𝑆 ) ∈ V | |
| 25 | eqid | ⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) | |
| 26 | 1 14 25 | mplval2 | ⊢ 𝑆 = ( ( 𝐼 mPwSer 𝑅 ) ↾s ( Base ‘ 𝑆 ) ) |
| 27 | eqid | ⊢ ( +g ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( +g ‘ ( 𝐼 mPwSer 𝑅 ) ) | |
| 28 | 26 27 | ressplusg | ⊢ ( ( Base ‘ 𝑆 ) ∈ V → ( +g ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( +g ‘ 𝑆 ) ) |
| 29 | 24 28 | ax-mp | ⊢ ( +g ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( +g ‘ 𝑆 ) |
| 30 | fvex | ⊢ ( Base ‘ ( 𝐼 mPwSer 𝐻 ) ) ∈ V | |
| 31 | 15 27 | ressplusg | ⊢ ( ( Base ‘ ( 𝐼 mPwSer 𝐻 ) ) ∈ V → ( +g ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( +g ‘ ( ( 𝐼 mPwSer 𝑅 ) ↾s ( Base ‘ ( 𝐼 mPwSer 𝐻 ) ) ) ) ) |
| 32 | 30 31 | ax-mp | ⊢ ( +g ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( +g ‘ ( ( 𝐼 mPwSer 𝑅 ) ↾s ( Base ‘ ( 𝐼 mPwSer 𝐻 ) ) ) ) |
| 33 | eqid | ⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) | |
| 34 | 7 33 | ressplusg | ⊢ ( 𝐵 ∈ V → ( +g ‘ 𝑆 ) = ( +g ‘ 𝑃 ) ) |
| 35 | 18 34 | ax-mp | ⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑃 ) |
| 36 | 29 32 35 | 3eqtr3i | ⊢ ( +g ‘ ( ( 𝐼 mPwSer 𝑅 ) ↾s ( Base ‘ ( 𝐼 mPwSer 𝐻 ) ) ) ) = ( +g ‘ 𝑃 ) |
| 37 | 36 | oveqi | ⊢ ( 𝑋 ( +g ‘ ( ( 𝐼 mPwSer 𝑅 ) ↾s ( Base ‘ ( 𝐼 mPwSer 𝐻 ) ) ) ) 𝑌 ) = ( 𝑋 ( +g ‘ 𝑃 ) 𝑌 ) |
| 38 | 17 23 37 | 3eqtr3g | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑋 ( +g ‘ 𝑈 ) 𝑌 ) = ( 𝑋 ( +g ‘ 𝑃 ) 𝑌 ) ) |